- 1. Consider two systems with fundamental relation $S = (N V U)^{1/3}$, where constant of proportionality is taken to be unity, for convenience. Consider N_1 moles and volume V_1 of one system, while N_2 moles and volume V_2 of the second system. These are kept constant. The total energy $U_0 = U_1 + U_2$, is given and is also fixed. Imagine a process in which energy is exchanged between the two systems via a diathermal wall.
	- a) Extremize the total entropy and find the equilibrium values of U_1 and U_2 .
	- b) Verify that the extremum of entropy corresponds to its maximum value.
	- c) Show that maximum value of entropy is given by,

$$
S_0 = (N_1V_1)^{1/3} \left[x^{1/3} + x^{-2/3} \right] \left[\frac{U_0}{(1+x)} \right]^{1/3},
$$

where $x = (N_1 V_1 / N_2 V_2)^{1/2}$.

- d) Find the temperature of each system and of the total system.
- 2. Now consider the equivalent problem in terms of minimization of energy, given that $U =$ S^3/NV (by inverting the above fundamental relation). Suppose the total entropy is fixed at S_0 , the value found above. Taking the values N_1, V_1, N_2, V_2 to be the same as above,
	- a) Extremize total energy with respect to variable S_1 .
	- b) Verify that the extremum corresponds to the minimum of total energy.
	- c) Show that the equilibrium value of total energy is U0, as given in the previous problem (hint: use the expression for S_0 found above.)
- 3. Find the three equations of state for a system described by the funda- mental relation: $U = kS³/NV$, where k is a positive constant. Verify that the equations of state are homogeneous zero-order (i.e. T, p, μ are intensive). Find μ as a function of T, V, N .
- 4. A particular system obeys: $u = Av^{-2} \exp(s/R)$, where A is a positive constant and R is the gas constant. N moles of this system at temperature T_0 and pressure P_0 , is expanded isentropically, until the pressure is halved. What is the final temperature?
- 5. Two identical copper blocks in thermal contact with each other (but isolated from their surroundings) are at the same temperature T_f . Show that if they spontaneously separate into hot and cold blocks, this will lead to a reduction in the total entropy and hence will violate the second law.