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Chapter 0

Notes on Error Analysis

RAJEEV KAPRI

0.1 Introduction

Error or uncertainty about a particular experimental measurement is the best estimate
of the quantitative range within which you can trust your results. Any experimental
measurement you make in the laboratory is meaningless unless quoted with an un-
certainty/error. We are not talking about errors like misreading a scale or slipping
a decimal point while taking a reading. Experimental uncertainties are a statement
about the resolution of your measurement i.e. how far from the “true” value you are
likely to be. There are two kinds of uncertainties associated with the measurement
of an experimental quantity:

• Random uncertainty: associated with unpredictable variations in the exper-
imental conditions. For example changes in room temperature, vibrations from
nearby machinery, error in time period measurement when the experimenter
does not start/stop the stopwatch at exactly the same point in the swing of the
pendulum etc. So if a measurement is repeated a number of times with sufficient
precision, a slightly different value of the measured quantity is obtained each
time and if the experiment is free from bias these variations will be random and
the measurements will group symmetrically about the “true” value.

• Systematic uncertainty: associated with inherent faults in measuring in-
strument or in measurement technique. This is an error that is consistent from
measurement to measurement. For example, measuring length of a table with
a tape that has a kink in it, a weak spring in a current meter, a calibration
error in the measuring device, a clock that runs too fast etc. So if there is an
experimental bias, the measurements will group around the wrong value and
are said to contain a systematic error. If you always round down to the nearest
tic mark on a meter stick while measuring length, you will make a systematic
error of measuring a slightly shorter length.

Random uncertainties are easier to quantify and deal with. There is no general
procedure for estimating the magnitude of systematic uncertainties.

1
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(a) (b) (c) (d)

Figure 1: Random vs systematic errors.

0.2 Precision vs Accuracy

Random uncertainty decreases the precision of an experiment whereas systematic
uncertainty decreases the accuracy of the experiment.

NOTE:- Systematic uncertainty does NOT mean that the uncertainty is repeat-
able. It means that the uncertainty has not been accounted for in the analysis.

Accuracy refers to the degree to which your value is correct within uncertainty.
It is largely a matter of having the correct calibration of all reference measurements.
If you used a uncalibrated meter stick that was shorter than the official length of a
meter, you might measure the length of an object with great precision (lots of decimal
places) but poor accuracy (what you think is a meter is not really a meter).

Precision can be thought of as the number of meaningful digits to a measure-
ment. A measurement of a length as being 1.023405 meters is more precise than a
measurement of 1.02 meters.

As an illustration of the concepts of precision and accuracy, consider the analogy
shown in Fig. 1. The measured quantity’s true value lies at the center of all circles
and the various dots represent the data points measured by the same apparatus.

• In the first experiment [Fig.1(a)], the data points show very different values and
are scattered over the circles. In this case, the random as well as systematic
errors are large and so the measurement is neither precise, nor accurate.

• In the second experiment [Fig.1(b)], the random errors are large but the sys-
tematic errors are small. The uncertainty in each measurement is large, so the
measurements are accurate but not precise.

• In the third experiment [Fig. 1(c)], the values lie within an experimental un-
certainty, that is, the random errors are small but since all the measurements
are away from the center, the systematic errors are large. Therefore, the mea-

surements are precise but not accurate.

• In the final experiment [Fig. 1(d)], the values lie both within an experimental
uncertainty and the actual value, that is, the measured value is precise and

accurate.

If we remove the circles from Fig. 1, we do not know the true value of the quantity
being measured. In this situation, we can still assess the random errors (i.e., the
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precision of the measured quantity) easily but it is impossible to estimate systematic
errors, i.e., we do not know if our measured quantity is accurate!

0.3 Three major sources of errors

0.3.1 Reading Error

Almost all direct measurements involve reading a scale (ruler, caliper, stopwatch,
analog voltmeter, etc.) or a digital display (e.g., digital multimeter or digital clock).
Sources of uncertainty depend on the equipment we use. One of the unavoidable
sources of errors is a reading error. Reading Error refers to the uncertainties caused
by the limitations of our measuring equipment and/or our own limitations at the
time of measurement (for example, our reaction time while starting or stopping a
stopwatch). This does not refer to any mistakes you may make while taking the
measurements. Rather it refers to the uncertainty inherent to the instrument and
your own ability to minimize this uncertainty. A reading error affects the precision
of the experiment. The uncertainty associated with the reading of the scale and the
need to interpolate between scale markings is relatively easy to estimate. For example,
consider the millimeter (mm) markings on a ruler scale. For a person with a normal
vision it is reasonable to say that the length could be read to the nearest millimeter
at best. Therefore, a reasonable estimate of the uncertainty in this case would be
∆l = ±0.5 mm which is half of the smallest division. A rule of thumb for evaluating
the reading error on analogue readout is to use half of the smallest division (in case
of a meter stick with millimeter divisions it is 0.5 mm), but only the observer can
ultimately decide what is his/her limitation in error evaluation. Note that it is wrong
to assume that the uncertainty is always half of the smallest division of the scale.
For example, for a person with a poor vision the uncertainty while using the same
ruler might be greater than one millimeter. If the scale markings are further apart
(for example, meter stick with markings 1 cm apart), one might reasonably decide
that the length could be read to one-fifth or one-fourth of the smallest division. It
is an estimate of systematic differences between different scales of the multimeter.
However it is the random error that determines the precision, and gives you an idea
of the scatter that you might expect in your readings. Thus, the “± digit” quoted by
the manufacturer might be a better estimate of the random error. Though you should
quote the systematic error at the end of your experiment when you are comparing
your result with some “standard”, it is better to use 1 digit for the random error in
each reading. For example, if your reading is 3.48 mA, you should quote (3.48±0.01)
mA. It is usually difficult or impossible to reduce the inherent reading error in an
instrument. In some cases (usually those in which the reading error of the instrument
approximates a “random error distribution”) it is possible to reduce the reading error
by repeating measurements of exactly the same quantity and averaging them.
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0.3.2 Random Error

Random Error refers to the spread in the values of a physical quantity from one mea-
surement of the quantity to the next, caused by random fluctuations in the measured
value. For example, in repeating measurements of the time taken for a ball to fall
through a given height, the varying initial conditions, random fluctuations in air mo-
tion, the variation of your reaction time in starting and stopping a watch, etc., will
lead to a significant spread in the times obtained. This type of error also affects the
precision of the experiment.

0.3.3 Systematic Error & Instrument Calibration

Systematic Error refers to an error which is present for every measurement of a given
quantity; it may be caused by a bias on the part of the experimenter, a miscalibrated
or even faulty measuring instrument, etc. Systematic errors affect the accuracy of
the experiment. After evaluating the reading error or the standard error, or both if
necessary, we have to make sure that the scale of our measuring instrument is checked
against an internationally established measuring standard. Such comparison is called
calibration. In the real world, we frequently find that our measuring scale is in slight
disagreement with the standard. For example, if you inspect such simple tools as
rulers, you will find out that no two rulers are exactly the same. It is not uncommon
to find a discrepancy of 1 mm or even more among meter sticks. The correct calibra-
tion of measuring instruments is obviously of great importance. However, in the first
year laboratory, the instruments you will use are usually calibrated by the laboratory
staff and ready to use (unless explicit lab instructions tell you otherwise). In addition
to all the errors discussed above, there can be other sources of error that may pass un-
noticed: variations in temperature, humidity or air pressure, etc. Such disturbances
are more or less constant during our measurements (otherwise they would appear as
random error when the measurement is repeated) and are generally referred to as the
systematic errors. Systematic errors are very difficult to trace since we do not know
where to look for them. It is important to learn to notice all the irregularities that
could become the sources of systematic errors during our experimental work. More-
over, it is particularly important in data-taking always to record some information
about the surrounding physical conditions. Such information may help us later on if
we discover a serious discrepancy in our experimental results. As a rule, the place,
date and time of measurements, and the type and serial numbers and specifications of
the instruments which were used must be recorded. Estimate all your reading errors
while you take your data and write them down with your data. Do the same for all
manufacturers’ error specifications. These usually cannot be guessed later on.

0.4 Mean & Standard Deviation

Mean

If the sources of error in a measurement (say measuring the length of a table) are
random, the values of the length will vary randomly above and below the “true” value
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of the table length, and will not be biased/skewed toward the lower/higher values.
The procedure to get the most precise value for the length is to take the average or
arithmetic mean

x̄ =
x1 + x2 + ...+ xN

N
=

1

N

N
∑

i=1

xi (1)

where N is the number of measurements and xi is the value of one measurement.
This definition of mean assumes that each measurement of x is independent and has
the same experimental uncertainty.

Standard Deviation

Now that the mean (“best” value) is known, it is important to quantify how much the
individual measurements are scattered about the mean or how “good” each individual
measurement is. If the experiment is precise, all measurements will be very close to
the mean value. So the extent of scatter about the mean is a measure of the precision
and a way to quantify the random uncertainty.

For unbiased measurements (all data points have equal weights), the standard
deviation σ is

σ =

√

√

√

√

1

(N − 1)

N
∑

i=1

(xi − x̄)2 (2)

σ becomes larger if the data is more scattered about the mean.
NOTE:- Convince yourself at this stage that more scatter of data means a larger
standard deviation and also that σ has the same units as xi.

Most Probable Value:

For unbiased measurements, the standard deviation of the mean of a set of measure-

ments, σm, is

σm =

√

∑N
i=1(xi − x̄)2

N(N − 1)
=

σ√
N
. (3)

This is important since it states that the uncertainty in the mean of N measurements
decreases as 1/

√
N .

NOTE:- Convince yourself that σm is necessarily smaller than σ. Also think about
the difference between σ and σm: σ is the standard deviation associated with indi-
vidual data points whereas σm is the standard deviation of the mean value of a set of

data points, that is, the uncertainty of a set of measurements made under identical
conditions.
EXERCISE:- For a Gaussian distribution, convince yourself that the mean will be
within the range x̄i ± σi 68% of the time, i.e., if another set of N measurements is
made, the mean of this new set has a 68% likelihood of being within the range x̄i±σi.
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Random errors and Gaussian distributions

In some measurements, there is a random element involved. Say that you measure the
fraction of times that a coin lands face up. You might refuse to make the measurement,
saying that you know the answer: its going to land face up exactly 50% of the time.
What if you make two measurements? If you flip the coin twice, do you expect it
to land face up once, and face down once, every time you flip it twice? Of course
not! Since each flip of the coin is uncorrelated with the previous flip (the coin has no
reason to remember how it landed last time), there is an intrinsic measurement error
which we can approximate as being equal to the square root of the number of events√
N . If we flip a coin N = 100 times, we would expect to have µ = 50 heads. About

2/3 of the time we will find that the number of heads we get is within the range
50 −

√
50 ≈ 43 and 50 +

√
50 ≈ 57, and 1/3 outside this range. In the continuum

limit, we expect to get something like a Gaussian (or the normal) distribution of
obtaining heads x:

P (x;µ, σ) =
1

σ
√
2π

exp

(

−(x− µ)2

2σ2

)

, (4)

about a mean value µ, with standard deviation σ. These two quantities completely
define the Gaussian (or the normal) distribution.

In Fig. 2(a) to 2(d), we have plotted the probability distribution of obtaining
heads in a coin tossing experiment (consisting of N = 100 tosses per trial) when the
experiment is repeated M = 102, 103, 104, and 106 times, respectively. The average
values of heads, µ, and the standard deviation, σ, for each case is reported in the
brackets. We can clearly see that µ approaches the value N/2 = 50 as the number of
trials M increases.

0.5 Stating your results: Absolute & Relative Un-

certainty

In general, the result of any measurement of physical quantity must include both the
value itself (best value) and its error (uncertainty). The result is usually quoted in
the form

x = xbest ±∆x (5)

where xbest is the best estimate of what we believe is a true value of the physical
quantity and ∆x is the estimate of absolute error (uncertainty). Note that depending
on the type of the experiment the prevailing error could be random or reading error.
In case the reading error and random error are comparable in value, both should
be taken into account and treated as two independent errors. You will learn how
to calculate ∆x in this case in the “Propagation of Errors” section. The meaning
of the uncertainty ∆x is that the true value of x probably lies between (xbest∆x)
and (xbest + ∆x). It is certainly possible that the correct value lies slightly outside
this range. Note that your measurement can be regarded as satisfactory even if the
accepted value lies slightly outside the estimated range of the measured value.
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Figure 2: Probability distribution P (x) of obtaining heads in a coin tossing exper-
iment consisting of N = 100 tosses per trial. The histograms are the experimental
data and the solid curve is the Gaussian fit, written in the brackets, to the data for (a)
M = 100 trials (µ = 49.1±0.4, σ = 5.2±0.3), (b) For M = 103 trials (µ = 50.3±0.1,
σ = 5.09± 0.08) (c) For M = 104 trials (µ = 50.01± 0.03, σ = 5.02± 0.03), (d) For
N = 106 trials (µ = 49.996± 0.003, σ = 5.005± 0.002).

∆x indicates the reliability of the measurement, but the quality of the measure-
ment also depends on the value of xbest. For example, an uncertainty of 1 cm in a
distance of 1 km would indicate an unusually precise measurement, whereas the same
uncertainty of 1 cm in a distance of 10 cm would result in a crude estimate. Frac-
tional uncertainty gives us an indication how reliable our experiment is. Fractional
uncertainty is defined as ∆x/xbest where ∆x is the absolute uncertainty. Fractional
uncertainty can be also represented in percentile form (∆x/x)100% . For example,
the length l = (0.50 ± 0.01)m has a best fractional uncertainty of 0.01/0.5 = 0.02
and a percentage uncertainty of 0.02100 = 2%. Note that the fractional uncertainty
is a dimensionless quantity. Fractional uncertainties of about 10% or so are usually
characteristic of rather rough measurements. Fractional uncertainties of 1 or 2% in-
dicate fairly accurate measurements. Fractional uncertainties much less than 1% are
not easy to achieve, and are rare in an introductory physics laboratory.
Percentage disagreement: In some cases, you can compare the value of your
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experimental measurement with the standard value as

|xstd − xexp

xstd

| × 100% (6)

If your percentage disagreement is more than ten percent, identify the reasons and
explain why this is so in your report.

NOTE:- This percentage disagreement is to give you an idea of the accuracy of
your experiment and in no case is to be used as a substitute for the detailed error
analysis of your experiment.

0.6 Significant Figures

An uncertainty should not be stated with too much precision. The last significant
figure in any stated answer should usually be of the same order of magnitude (in the
same decimal position) as the uncertainty. For example, the answer 92.81 s with an
uncertainty of 0.3 s should be rounded as (92.8 ± 0.3) s. If the uncertainty is 3 s,
then the result is reported as (93 ± 3) s. However, the number of significant figures
used in the calculation of the uncertainty should generally be kept with one more
significant figure than the appropriate number of significant figures in order to reduce
the inaccuracies introduced by rounding off numbers. After the calculations, the final
answer should be rounded off to remove this extra figure.

• The uncertainty σ should have 1 digit or at most 2 digits (all uncertainty calcu-
lations are estimates; there is no such thing as exact uncertainty!). The result
itself should be stated to the same precision as σ, for example, 10.25± 0.15sec
or 10.3± 0.2sec but NOT 10.25± 0.2sec.

• If σ is very large, you will lose significant digits. If the measurement is so bad
that σ is larger than the value itself, you will have no significant digits but only
know the order of magnitude!

0.6.1 Practical Hints

So far, we have found two different errors that affect the precision of a directly mea-
sured quantity: the reading error and the standard error. Which one is the actual
error of precision in the quantity? For practical purposes you can use the following
criterion. Take one reading of the quantity to be measured, and make your best esti-
mate of the reading error. Then repeat the measurement a few times. If the spread
in the values you obtain is about the same size as the reading error or less, use the
reading error. If the spread in values is greater than the reading error, take three
or four more, and calculate a standard error and use it as the error. In cases where
you have both a reading error and a standard error, choose the larger of the two as
“the” error. Be aware that if the dominant source of error is the reading error, taking
multiple measurements will not improve the precision.
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0.6.2 Mistakes and Misconceptions

In the introductory physics laboratory, it is almost always meaningless to specify the
error to more than two significant digits; often one is enough. It is a mistake to write:
x = (56.7±0.914606) cm, or x = (56.74057±0.9) cm. Instead, write: x = (56.7±0.9)
cm. You cannot increase either the accuracy or precision by extending the number
of digits in your mean value beyond the decimal place occupied by the error. Keep
in mind that the error, by its nature, denotes the uncertainty in the last one or two
significant digits of the main number and therefore any additional digits obtained
from multiplication or division should be rounded off at the meaningful position. So,
first calculate your error; round it off to one significant figure; then quote the value
of your measurement to the appropriate number of significant figures.

When quoting errors in a result do not use the flawed logic that “my result is x, the
handbook gives a value for this quantity as y, thus the error in my result is ±(x−y)”.
Your quoted error should be the result of your own analysis of your own experiment
whereas (x − y) relates to a comparison of your work to other people’s work. (xy)
represents the difference between your result and the accepted value. The discrepancy
can be used to characterize the consistency between different sets of measurements,
but has nothing to do with the estimate of error in your own experiment. If a result
we produce differs significantly from the accepted value, we then are obligated to
explain what has produced the difference. But in quoting our own result, we must
provide the error of our own experiment.

0.7 Propagation of Errors

In the majority of experiments the quantity of interest is not measured directly, but
must be calculated from other quantities. Such measurements are called indirect.
The quantities measured directly are not exact and have errors associated with them.
While we calculate the parameter of interest from the directly measured values, it
is said that the errors of the direct measurements propagate. Errors can propagate
in measurements. What happens to the final uncertainty in a measurement which
depends on several variables, each with its own uncertainty? The answer is not
obvious and two cases are possible: when the uncertainties in the individual variables
are independent and when the individual uncertainties are dependent. In this lab,
you will work with the assumption that the individual uncertainties are completely
independent.

As an example, consider the following problem. Suppose we have measured the
value of a quantity x with an uncertainty, which we denote ∆x. In order to test a
theoretical formula, suppose that we need to calculate y as function of x i.e., y = f(x).
We want to know the uncertainty in y due to the uncertainty in the value of x. This
is equivalent to asking what will be the variation in y (call it ∆y) as x varies from x
to (x+∆x)? Mathematically, this variation is given by ∆y = f(x+∆x)− f(x). The
answer comes from the differential calculus: if y = f(x) and ∆x is small, then

∆y ≈ dy

dx
∆x =

df

dx
∆x (7)
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This argument can be extended for the calculation of quantities that are functions of
several different measured quantities. All you will need at this point are the results
that you can find below for different types of functions. Note that we neglect the sign
in the differential, since the sign of all errors may take on numerical values which are
either positive or negative.

0.7.1 Propagation of Independent Errors

Suppose various quantities x1, · · · , xn, w1, · · · , wn with uncertainties ∆x1, · · · ,∆xn,∆w1, · · · ,∆w
are used to calculate a quantity y. The uncertainties in x1, · · · , xn, w1, · · · , wn prop-

agate through the calculation to cause an uncertainty in y, provided all errors are
independent and random, as follows:
Sums and Differences: If

y = x1 + · · ·+ xn − (w1 + · · ·+ wn),

then

∆y =

√

(∆x1)
2 + · · ·+ (∆xn)

2 + (∆w1)
2 · · ·+ (∆wn)

2. (8)

Product and Quotients: If

y =
x1 × · · · × xn

w1 × · · · × wn

,

then

∆y

|y| =

√

(

∆x1

x1

)2

+ · · ·+
(

∆xn

xn

)2

+

(

∆w1

w1

)2

+ · · ·+
(

∆wn

wn

)2

. (9)

Measured Quantity Times Exact Number: If A is known exactly and

y = Ax,

then

∆y = |A|∆x or, equivalently,
∆y

|y| =
∆x

|x| . (10)

Uncertainty in a Power: If n is an exact number and

y = xn,

then
∆y

|y| = |n|∆x

|x| . (11)

Uncertainty in a Function of One Variable: If y = f(x) is any function of x,
then

∆y =

∣

∣

∣

∣

df

dx

∣

∣

∣

∣

∆x.

If f(x) is a complicated function, then instead of differentiating f(x), one can use an
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equivalent formula
∆y = |f(xbest +∆x)− f(xbest)|. (12)

General Formula for Error Propagation: If u = f(x, y, z, . . .) is a function of
several variables with the independent variables x, y, z, . . . having independent and
random uncertainties ∆x,∆y,∆z.... The uncertainty in u is then given by the formula

∆u =

√

(

∂f

∂x
∆x

)2

+

(

∂f

∂y
∆y

)2

+

(

∂f

∂z
∆z

)2

+ · · ·, (13)

where the partial derivatives are all evaluated at the best known values of x, y, z, . . ..
NOTE:- This formula is based on a first-order Taylor series expansion of a function of
many variables and is valid when the individual uncertainties ∆xi’s are uncorrelated
with each other and are small compared to the values of the quantities. The first-order
Taylor series expansion of any function f at x0 is given by:

f(x− x0) ≈ f(x0) + (x− x0)
d

dx
f(x)|x=x0

. (14)

0.7.2 Exercises

Write out the error propagation formula (in terms of ∆f/f) when the function f(x, y)
is of the form:

1. f = x ∗ y

2. f = x/y

3. f = x+ y

4. f = x− y

5. f = xmyn

6. f = kx (k is con-
stant)

7. f = lne x

8. f = log10 x

9. f = ex

0.8 Fitting Data: Least Squares Regression

Frequently in the lab you will perform a series of measurements of a quantity y at
different values of x. This gives a more accurate determination of a physical parameter
rather than a single measurement. If you have a linear relationship y = mx+ b, you
can determine the uncertainty in the measured slope m and the intercept b.

A common method to find the best curve to fit a set of data points is the “method
of least squares”. If all the data points have nearly the same weight/error, one can
try to arrange the curve so that as many points lie below the line as above. However,
such a visual method is not quantitative.

The least-squares method of curve fitting can be described qualitatively as follows:
Let the data set be represented by the functional form f(x; a, b, . . .) where a, b, .. are
adjustable parameters that can be varied to get the best fit curve. The function, f ,
can be a straight line (f(x) = mx+ b where the adjustable parameters are m and b)
or a higher order polynomial or any other complicated function. For each data point
(xi, yi), the value yi − f(xi; a, b...) is computed and then the “chi-square” value χ2 is
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calculated from the expression

χ2(a, b, . . .) =
∑

i

[yi − f(xi; a, b, . . .)]
2

σ2
i

, (15)

where σi is the uncertainty of each data point. The best fit is found by adjusting the
parameters a, b, . . . until the minimum value of χ2 is achieved. For N data points and
n adjustable parameters, the “reduced chi-square” can be calculated from

χ2
ν =

χ2

ν
=

χ2

N − n
, (16)

where ν is the “degrees of freedom” in the problem. If the parameters are adjusted
so that χ2

ν ≈ 1, a “good fit” is achieved i.e. the difference between the fitted curve
and the data is on an average, as big as the uncertainty in the data itself.

0.8.1 Fitting to a straight line

As an example of the least squares method, consider the problem of fitting of a set
of N data points (xi, yi) to a straight line f(x) ≡ y = mx+ c. It is assumed that the
uncertainty σi associated with each measurement yi is known, and the values of the
dependent variable xi’s are exactly known. The chi-square merit function given by
Eq.(15) for this case is

χ2(m, c) =
N
∑

i=1

(yi −mxi − c)2

σ2
i

. (17)

To determine the parametersm and c, we need to minimize χ2(m, c). At its minimum,
the derivatives of χ2(m, c) with respect to m and c vanishes:

∂χ2

∂m
= −2

N
∑

i=1

(yi −mxi − c) xi

σ2
i

= 0, (18a)

and
∂χ2

∂c
= −2

N
∑

i=1

yi −mxi − c

σ2
i

= 0. (18b)

Define,

wi ≡
1

σ2
i

; S ≡
N
∑

i=1

wi; Sx ≡
N
∑

i=1

wixi; Sy ≡
N
∑

i=1

wiyi; (19)

Sxx ≡
N
∑

i=1

wix
2
i ; Sxy ≡

N
∑

i=1

wixiyi.
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With the above definition, the above equations can be rewritten as simultaneous
equations for m and c:

cS +mSx = Sy, (20a)

and
cSx +mSxx = Sxy. (20b)

The solution of these two equations in two unknowns is calculated as

m =
SSxy − SxSy

∆
, (21a)

and

c =
SxxSy − SxSxy

∆
, (21b)

with
∆ ≡ SSxx − (Sx)

2. (21c)

This gives the best fit values of the parameters m and c. The next task is the
estimation of the probable uncertainties in the estimates of m and c, which is intro-
duced by the measurement errors in the data. If the data are independent, then each
contributes its own bit of uncertainty to the parameters. Recall from the propagation
of error section [Equation (13)] that the standard deviation σf in the value of any
function f will be

σf =

√

√

√

√

N
∑

i=1

σ2
i

(

∂f

∂yi

)2

. (22)

For the straight line, the derivatives of m and c with respect to yi can be directly
evaluated from the solution:

∂m

∂yi
=

Sxx − Sxxi

σ2
i∆

∂c

∂yi
=

Sxi − Sx

σ2
i∆

. (23)

Substituting these in Eq. (22) and summing over the points we get the standard
deviations

σm =

√

Sxx

∆
and σc =

√

S

∆
, (24)

in the estimates of m and c respectively.
If we assume that the uncertainties in y have the same magnitude σy for all the

data points, then the above equations remain valid with wi = 1/σ2
y . For this case,
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the above equations take the form

m =
N
∑

xiyi −
∑

xi

∑

yi
∆

(25)

c =

∑

x2
i

∑

yi −
∑

xi

∑

xiyi
∆

∆ = N
∑

x2
i −

(

∑

xi

)2

.

The standard deviation in m and c is given by

σc = σy

√

∑

x2
i

∆
σm = σy

√

N

∆
, (26)

where, the uncertainty σy in the numbers y1, . . . , yN can be estimated by

σy =

√

√

√

√

1

(N − 2)

N
∑

i=1

(yi −mxi − c)2, (27)

assuming that the deviations (yi −mxi − c) are normally distributed.

Example: Let us fit a straight line to a set of data (shown below) that is obtained
by an arbitrary experiment. On the right hand side the data and the best straight
line fit is plotted.

x y
200.0 194.18
225.0 223.81
250.0 251.71
275.0 273.84
300.0 314.08
325.0 313.51
350.0 339.00
375.0 379.26
400.0 383.45
425.0 444.31
450.0 462.51
475.0 489.33
500.0 497.00

 150

 200

 250

 300

 350

 400

 450

 500

 550

 200  250  300  350  400  450  500

y

x

Step by step procedure to fit a straight line to a data set:

1. The data looks linear so we can try fitting a straight line y = mx+ c to it.

2. The above table does not mention the uncertainties of individual data points so
we can assume that the uncertainties in y’s have the same magnitude σy, which
needs to be calculated.
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3. To calculate m and c, we need to calculate the following sums

∑

xi = 4550.0
∑

x2
i = 1706250.0

∑

yi = 4565.99
∑

xiyi = 1715687.0

4. Using these values in Eq. (25), we get

∆ = 1478750.0 m = 1.03 c = −10.59

5. Next we need to calculate the uncertainties in the constants m and c. We first
calculate the uncertainty σy in y’s by using Eq. (27). For the above set of data
we get σy = 11.19. The uncertainties σm = 0.03 and σc = 12.02 in constant m
and c respectively can then be calculated from Eq. (26).

Result: The slope m and the intercept c of the best fitted straight line to the above
data is

m = 1.03± 0.03 c = −10.59± 12.02.

IMPORTANT NOTE:- You are expected to plot your data and do least squares
analysis to find the best fit to your data and also estimate the goodness of fit. You
may use gnuplot or other standard computer programs to find the best fit parameters
and also the uncertainties in the parameters. Use the values of σ generated by the
computer program in your analysis of error propagation in your experiment. LAB
REPORTS WHICH DO NOT INCLUDE AN ANALYSIS OF ERRORS WILL NOT
BE GIVEN A FULL GRADE.

References

1. Practical Physics, Third edition, by G. L. Squires, Cambridge University Press
(1999).

2. An Introduction to Error Analysis, Second edition, by J. R. Taylor, University
Science Books (1997).



Experiment 1

Terminal velocity of a magnet
through a metal pipe

Manish Pareek, Prof. Arvind and Dr.Paramdeep Singh

1.1 Introduction

In this experiment, we study the motion of a magnet falling down a metal pipe, versus
a plastic pipe. When a magnet falls through a plastic pipe, it falls under the action
of gravity. However, when it falls through a metal pipe, in addition to gravity, it
experiences an upward force due to electromagnetic induction. The force is velocity
dependent and increases as the magnet speeds up, leading to a final terminal velocity
of the magnet. We use small coils wound outside the pipe as sensors to locate the
position of the magnet. The experiment can be used to measure acceleration due to
gravity g when a plastic pipe is used and for the metal pipe, it can be used to study
the Lenz’s law. The experiment can also be extended to measure the conductivity of
the material of the metallic pipe.

1.2 The Experiment

1.2.1 Aim of Experiment

1. To measure the velocity of a freely falling magnet through a tube fitted with
sensors (sensor tube).

2. To find out the acceleration due to gravity g from data obtained in step (1).

3. To measure the terminal velocity of a falling magnet thorough a conducting
tube (copper or aluminium) which is kept inside the sensor tube.

4. Calculate conductivity of material of pipe.

5. Calculate current flowing through the pipe due to motion of magnet.

16
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Figure 1.1: Schematic setup for the experiment

Apparatus used

A copper pipe, sensing unit, neodymium magnet, germanium diodes, wires, oscillo-
scope, and a gauss meter.

1.2.2 Theory

The strong magnet falling through a conducting pipe experiences an opposing mag-
netic damping force which gradually increases. If the pipe is long enough, the magnet
eventually reaches a constant terminal speed. The damping force on the magnet
arises from circular currents flowing inside the tube wall known as eddy or Foucault
currents. These eddy currents are generated due to the electromotive force (e.m.f.),
ε, induced in the pipe due to the time variation of the magnetic flux caused by the
motion of magnet inside the tube.

Let us start with a short conductive ring of radius a is moving with velocity v in
a region where non-uniform magnetic field B exists we observe

1. A transient e.m.f. ε is induced in the ring which is given by

ε =

∫

v ×B · dℓ = vBr(2πa), (1.1)

where Br is the radial component of the magnetic field, and the integral was
evaluated along the ring.

2. A variable retarding magnetic force F appears on the short ring which opposes
its motion. The axial component Fz opposing the motion of the ring along the
z-axis is given by

Fz = i(ℓ×B)z = 2πiaBr. (1.2)

Now consider the motion of a short and strong cylindrical magnet through a
vertical conducting pipe, whose inner and outer radii are a, and b, respectively, under
gravity. The velocity of magnet is v = vẑ. It is assumed that the magnet axis of
symmetry is always coincident with the vertical pipe symmetry as shown in Fig. 1.1.

The fieldB due to the magnet can be approximated as being produced by a simple
magnetic dipole. The axial component Bz and the radial component Br of the field
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are respectively given by

Bz =
µ0µ

4π

(

2z2 − r2

(r2 + z2)5/2

)

, (1.3)

Br =
3µ0µzr

4π(r2 + z2)5/2
. (1.4)

Inserting Br in Eq. 1.1, we get the induced e.m.f.

ε = v(2πa)
3µ0µzr

4π(r2 + z2)5/2
. (1.5)

If σ is the conductivity of the material of the pipe wall and dA denotes the cross-
sectional are of a small ring element of length ℓ = 2πa, then the conductance of this
ring is given by dC = σdA/ℓ, and the induced current di along such a ring is

di = εdC = ε
σdA

ℓ
= BrvσdA. (1.6)

If we denote τ as the thickness of the pipe, the magnetic force dF on the small ring
of height dz is given by

dF = ℓBrdi = (2πa)B2
rσvτdz (1.7)

or

dF = (2πa)σvτ

(

3µ0µ

4πa3

)2
u2du

(1 + u2)5
, (1.8)

where we have inserted value of Br from Eq. 1.4 and introduced the new variable u
with z = au. Integrating Eq. 1.8 along the pipe gives the effective retarding force on
the magnet

F =

∫ ∞

−∞

(2πa)σvτ

(

3µ0µ

4πa3

)2
u2du

(1 + u2)5
= (2πa2)σvτ

(

3µ0µ

4πa3

)2
f

π
, (1.9)

where f is a constant whose value is given by

f =

∫ ∞

−∞

u2du

(1 + u2)5
=

5π

256
. (1.10)

We can obtain the force experienced by the falling magnet using Eq. 1.9 if we know
the magnetic moment µ̃ = µ0µ/4π (in SI units) of the magnet. The magnetic moment
can be obtained by measuring the radial field Br of the magnet (using a Gaussmeter)
as a function of distance r from its axis. 1 If we plot Br as a function of 1/r3, we get
a straight line with slope µ̃/2. The magnetic drag force on the magnet is given by

F =

(

45π2στµ̃2

64a4

)

v = kv, (1.11)

1The magnetic magnetic field Br due to a magnetic dipole varies as Br = m̃u/2r3
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Figure 1.2: The radial magnetic field Br (in Tesla) vs 1/r3 (in m−3) for the magnet.
The slope of the line gives the magnetic moment µ̃/2.

where

k =

(

45π2στµ̃2

64a4

)

, (1.12)

is the magnetic drag constant. When the magnetic drag force becomes equal to the
weight mg of the magnet, the magnet attains a terminal velocity vT given by

vT =
mg

k
. (1.13)

In deriving Eq. (1.11) it was assumed that the thickness of the pipe is much smaller
than the pipe’s inner radius a, i.e., τ ≪ a. If we consider a pipe of finite thickness
τ = b− a, where b is the external radii of the pipe. A tube of infinitesimal thickness
da exerts on the falling magnet an infinitesimal force dF given by Eq. (1.11),

dF =

(

45π2σvµ̃2

64a4

)

da. (1.14)

Integrating across the wall, i.e., from a to b, we get

F =

∫ b

a

45π2σvµ̃2

64a′4
da′ =

45π2σvµ̃2

64 · 3

(

1

a3
− 1

b3

)

. (1.15)

Introducing the thickness parameter λ defined so that b = λa, the above equation
becomes

F =
45π2σvµ̃2

64a4
a

3

(

1− 1

λ3

)

. (1.16)

It is therefore useful to define the effective thickness τ ′ of the cylindrical wall as

τ ′ =
a

3

(

1− 1

λ3

)

(1.17)

Now replacing the thickness τ by τ ′ in Eq. (1.12) we get the magnetic drag constant
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as

k =
45π2στµ̃2

64a4
a

3

(

1− 1

λ3

)

. (1.18)

This value of k should be used in Eq. (1.13) to obtain the terminal velocity.



Experiment 2

Black body radiation and Stefan’s
law using an incandescent tungsten
lamp

Prof. Arvind and Dr. Paramdeep Singh

2.1 Introduction

Black body radiation experiments are slightly tricky to set-up in an undergraduate
Physics laboratory owing to the requirement that the object under study needs to
be at very high temperatures (T > 103K). In addition, such an object needs to be
isolated from the environment to prevent oxidation. The incandescent lamps, either
gas filled or having vacuum inside, provide a very convenient source of black body
radiation. In this experiment we will use a lamp with vacuum inside it.

2.2 The Experiment

2.2.1 Aim

The aim of the experiment is:

1. To study the variation of total power radiated by the lamp with temperature.

2. To investigate if this source follows the Stefan’s law.

3. To what extent this source emulate black body.

2.2.2 Circuit Diagram

The setup designed to provide all the requirements is shown in Fig. 2.1 (Left) while
the connection diagram for the experiment is shown in Fig. 2.1(Right). The lamp
is connected to a variable power supply through an ammeter. The voltmeter is con-
nected parallel to the lamp.
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Figure 2.1: Left: The experimental setup. Right: The connections required for the
experiment.

2.2.3 Theory

We know that an object at an elevated temperature T radiates energy which we can
feel also if the temperature is significantly higher than the environment. The Power P
radiated by such an object is give by the following relation called Stefan-Boltzmann
Equation:

P = σAeT 4, (2.1)

where, P is the power or the rate at which energy is radiated by the source, σ =
5.6696× 10−8Wm−2K−4 is a constant called Stefan’s constant, A is the surface of ra-
diating object, T is the temperature in Kelvin and e is the emissivity and is considered
constant with temperature. For a perfect black body e = 1.

The following assumptions are being made for this experiment:

1. The loss of heat due to conduction is negligible. This is because the lamp used
in this experiment contains a filament in an evacuated chamber.

2. The loss of heat through the wires connecting the filament is assumed to be
negligible. This means that all of the energy supplied by the battery is radiated
as heat.

3. The filament is considered perfect black body with emissivity e = 1.

Taking logarithm of Eq. 2.1 we get

log(P ) = log(σA) + log(T 4). (2.2)

Since we have considered that all the electrical energy supplied to the lamp is
radiated, the power radiated can be obtained from the V − I data of the lamp as
P = V I. Where I is the current through the lamp and V is the potential difference
across it. If we are able to obtain T , then we can plot log(P ) vs log(T ) with the
following observations

1. The slope of graph will allow us to validate the Stefan-Boltzmann Equation.
The expected value of slope is 4.

2. The graph allows the measurement of log(σA).
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3. If A can be estimated the above measurement will allow to us estimate σ.

Except power, P , the other variables will be obtained indirectly using V − I data.

2.2.4 Procedure

The experimental measurements are divided into two parts:

1. Measurement of V − I data at high temperatures and calculation of required
quantities.

2. Measurement of lamp filament resistance at room temperature.

Measurement of Resistance and calculation of Resistivity at different Tem-
peratures

We know that the resistance of a metal varies with temperature as

Rt = R0(1 + αt) (2.3)

Where R0 is the resistance at 0
◦C and Rt resistance at t

◦C. For temperatures t1 and
t2, the Eq. 2.3 can be written as

Rt1 = R0(1 + αt1), (2.4a)

and
Rt2 = R0(1 + αt2). (2.4b)

Dividing Eq. 2.4b by Eq. 2.4a we get

Rt2

Rt1

=
(1 + αt2)

(1 + αt1)
. (2.5)

The Rt1 is the value of lamp resistance at room temperature t1. The temperature
coefficient of resistance α for tungsten is 0.0045/◦C. The temperature t1 is known
(through measurement). Rt2 is the value of resistance obtained from the V − I data.
Remember that you are not to find resistance from V −I graph, but calculate individ-
ual values using R = V/I (Why?). Once the values of Rt2 representing the resistance
measured at different temperatures are known, the resistivity corresponding to those
resistance values can be calculated, which in turn allow us to obtain temperature
values from the standard data.

Calculation of Resistivity

We know that the resistance R of a conductor is given by

R = ρ
ℓ

a
, (2.6)

where ℓ is the length of the conductor and a is its are of the cross section. In our case,
the conductor is a filament (which is usually a cylindrical coil for large and a wire for
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S. No. Voltage V Current I Resistance Rt Resistivity ρt Temperature T

Table 2.1: Sample table for the calculation of temperature.

small filaments). The factor ℓ/a is usually constant over a temperature range. Let us
take ℓ/a = k, then from Eq. 2.6, we get

k =
R

ρ
. (2.7)

Remember that Rt1 is the resistance at room temperature t1. We will set R = Rt1

and Rt = Rt2 . Similarly ρ = ρt1 and ρt = ρt2 . For tungsten ρ = 5.6× 10−8ohm-m at
20◦C. This value of k allows us to calculate ρt at different temperatures

ρt =
Rt

k
. (2.8)

Calculation of Temperature

Equation 2.5 can be written as

ρt
ρ

=
(1 + αt)

(1 + α 20)
. (2.9)

In Eq. 2.9, ρt, ρ and α are known, and for the room temperature the value of ρ at
20◦C can be used. From Eq. 2.9 we get

t =
1

α

[

ρt
ρ
(1 + 20α)− 1

]

. (2.10)

Equation 2.10 yields temperature values in ◦C which needs to be converted to Kelvin
and tabulated as shown in Table. 2.1.

Measurement of lamp filament resistance at room temperature

This part needs more attention. The most convenient way is using V−I data, but even
very small values of current through filament can raise its temperature significantly
so as to change its resistance by a considerable amount. Using lower potential ensures
very small amount of power dissipation in the filament, so that filament temperature
does not increase and its resistance remains constant over the range of measurement.
The preferable current range is µA, therefore, voltage range should be kept very small
(mV). It is recommended that the measured resistance be marked on the lamps and if
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Figure 2.2: Connections for millivolt power source to measure the resistance of the
bulb at room temperature.

available previously marked lamps can be used. Such low voltage supplies are usually
not available in the lab. To work at such low voltages your supply should be very
clean with no ripples. Best option is to use two AA size batteries with a holder
and potential divider arrangement as shown in Fig. 2.2. Alternatively a good quality
multimeter can be used to measure the filament resistance using the Ohm range (the
requirement here is the current during this measurement should not be more than
couple of hundred µA ).

2.2.5 Representation of Data

The following graphs needs to be plotted

1. V vs I for high temperatures.

2. V vs I for millivolt data (if acquired).

3. log(P ) vs log(T ) for high temperatures.

Calculate the slope of log(P ) vs log(T ). Ideally the slope should be 4. Measure
intercept from the same graph to find log(σA). Look at the lamp and see if you can
optically estimate the length ℓ of the filament. If ℓ can be measured, it will allow us
to calculate cross-sectional area of the coil using Eq. 2.6. Using this data the surface
area of the filament can be estimated, which in turn can be used to estimate σ using
log(σA) calculated from the intercept or alternatively effective area of the coil can be
estimated using value of σ.

The plot of V − I characteristics at high temperatures and the plot of log(P ) vs
log(T ) obtained for the experiment are shown in the left and right panels of Fig. 2.3,
respectively.
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Experiment 3

Random Sampling of an AC source

Prof. Arvind and Dr. Paramdeep Singh

3.1 The Experiment

3.1.1 Aim

The aim of the experiment is to perform random sampling of an AC source using a
capacitor and use the obtained data to study the following

1. Plotting the probability distribution of mathematical function V = V0 sin(ωt)
and comparing it with the observed distribution.

2. Study the effect of sampled data size on the probability distribution by taking

(a) 100 observations,

(b) 500 observations,

and comparing them.

3. Study the effect of bin size on the probability distribution by plotting the same
set of data with different bin sizes and comparing them.

4. Reconstructing the sinusoidal waveform using the information recovered from
the random data in this experiment.

5. Plotting the probability distribution of the square wave and compare the result
with the sine wave.

Apparatus

A capacitor (nonpolar) 50-100 µF/25V, a DC voltmeter (preferably peak reading), a
low frequency AC source (a step down transformer 0-6V), a DPDT switch.

3.1.2 Circuit diagram

The circuit diagram is shown in Fig. 3.1.

27



3.2. PROCEDURE 28
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Figure 3.1: Circuit Schematic

3.2 Procedure

1. Connect the circuit diagram as shown in Fig. 3.1.

2. Switch on the power.

3. Using the toggle switch S1 connect the capacitor to the AC source.

4. Toggle the switch S1 to disconnect the capacitor from ac source and connect
it to the digital voltmeter. The following precautions should be taken while
taking voltage readings

• If a peak reading voltmeter is connected, note down the final reading of
the display.

• If any simple digital multimeter is connected then note down the maximum
which appears on the display.

• The input impedance of the meter should be ≥ 1MΩ.

5. Repeat the procedure in step 3 and 4 to get a data set preferably 500 observa-
tions.

3.2.1 Data Analysis

Let us analyse the data obtained in the previous step. The first step is to obtain the
distribution function n(V ), which is defined as the number of times the measurement
of V results in a value between V and V +∆V .

Distribution Function

To obtain n(V ), we need to bin the data. Let us assume that in a particular set the
maximum and minimum voltage measured are 8.0 V and -8.0 V. Take V along the
x-axis. We will divide the whole range in a number of bins as follows:

• Let us take 1 V = 1 cm on the graph paper. Using this scale create bins of
width 1 V from −8.0V to +8.0V .
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Figure 3.2: Binning data

• Place each data point into its respective bin, i.e., the reading 4.8 will be marked
in the bin between 4.0 and 5.0.

• The data on the graph paper will look like Fig. 3.2, where every cross represents
a measured value.

The corresponding probability distribution of values of V , denoted by P (V ), is
given by

P (V )∆V ≡ n(V )

N
, (3.1)

where N represents the total number of times the voltage is measured. For a sine
wave, the probability distribution P (V ) is given by

P (V ) =
1

π
√

(V 2
0 − V 2)

, (3.2)

where V0 is the peak value of the voltage.

Plotting the waveform

From Eq. 3.1, the distribution function n(V ) can be written as

n(V ) = NP (V )dV, (3.3)

where we have changed ∆V to differential dV . The accumulated frequency of events
up to a voltage V can then be obtained by integrating Eq. 3.3

NV =

∫ V

0

NP (V )dV =
N

π
sin−1

(

V

V0

)

, (3.4)

Where V0 is the measured peak value of the applied voltage. For discrete bins of size
∆V , the integration is replaced by sum over bins,

NV =
∑

n(V ) =
∑

NP (V )∆V.

In other words, by a cumulative process of adding the frequencies in bins, starting
from the bin V = 0 to the bin V = V , we recover the sine wave. Inverting Eq. 3.3 we
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of NV vs V = V0 sin (πNV /N) which represents one fourth of the recovered waveform.

get

V = V0 sin
( π

N
NV

)

, (3.5)

with

NV =
k
∑

i=1

ni(V ) (3.6)

where k represents the kth voltage bin. The voltage points can be calculated from the
following expression

Vk = V0 sin

(

π

N

k
∑

i=1

ni(V )

)

. (3.7)

Note that the data from which voltage points are recovered is random. Therefore,

the time relation of these data points and hence the frequency of waveform cannot be

determined.

Sample calculations

A sample set of data with peak value V0 = 10 volts and a set of positive values (157
data points) is shown in Table 3.1. The total number of data points (by taking similar
number of negative values also) are therefore N = 2 × 157 = 314. A comparison
of theoretical probability distribution and experimental observation is shown in the
Left panel of Fig. 3.3. In the Right panel, we have shown the plot of NV vs V =
V0 sin (πNV /N) which represents a one fourth of the recovered sine waveform.
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S.No Bin n(V) NV V = V0 sin
(

πNv

N

)

1 0.0 0 0 0
2 0.0-0.5 5 5 0.5
3 0.5-1.0 5 10 1.0
4 1.0-1.5 5 15 1.49
5 1.5-2.0 5 20 1.99
6 2.0-2.5 5 25 2.47
7 2.5-3.0 5 30 2.96
8 3.0-3.5 6 36 3.52
9 3.5-4.0 5 41 3.99
10 4.0-4.5 6 47 4.53
11 4.5-5.0 5 52 4.97
12 5.0-5.5 6 58 5.48
13 5.5-6.0 6 64 5.97
14 6.0-6.5 7 71 6.52
15 6.5-7.0 7 78 7.03
16 7.0-7.5 7 85 7.51
17 7.5-8.0 8 93 8.02
18 8.0-8.5 9 102 8.52
19 8.5-9.0 10 112 9.00
20 9.0-9.5 13 125 9.49
21 9.5-10.0 32 157 10.00

Table 3.1: A sample table with set of positive voltage readings.



Experiment 4

Magnetic moment in the magnetic
field

Mohammad Aslam and Soumyadip Halder

4.1 The Experiment

4.1.1 Aim

The aim of the experiment is to determine the torque due to a magnetic moment in
a uniform magnetic field, as a function of

1. The strength of the magnetic field,

2. The angle between the magnetic field in the magnetic moment,

3. The strength of the magnetic moment.

4.1.2 Apparatus used

Pair of Helmholtz coils, conductors circular set, torsion dynamometer 0.01 N, coil
holder, power supply var. 15 VAC/12 VDC/5 A, Support rod -PASS-, square, l 630
mm.

4.2 Theory

The Helmholtz coil provides uniform magnetic field at the centre. If a current carrying
loop is placed at the centre, such a way that the loop contains non zero flux then
there will be a torque on the loop. This torque will rotate the loop until balanced by
the torque, generated from the metallic band of torsion dynamometer. The value of
torque can be read from the reading of torsion dynamometer.

If a current I is passed through a closed loop of area A it produces a magnetic
moment ~m

~m = I ~A, (4.1)
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Figure 4.1: Pair of Helmholtz Coil

whose direction is along the direction of the area vector ~A. If this current carrying
loop is kept in a uniform magnetic field with flux density ~B, it experiences the torque
τ given by

τ = ~m× ~B. (4.2)

If the angle between the area vector ~A and the magnetic field ~B is φ (as shown in
Fig. 4.1), then

τ = BIA sinφ. (4.3)

The magnetic field B is given by B = cIH , where c and IH are the Helmholtz coil
constant and the current through the Helmholtz coil, respectively. The torque is thus
given by

τ = cIHIA sinφ. (4.4)

The above equation shows that, the torque τ is directly proportional to

• current IH in the Helmholtz coil,

• current I in the coil,

• Sine of angle between the area vector ~A and magnetic field ~B.

4.3 Procedure

The connections are shown in Fig. 4.2.

1. First connect the Helmholtz coils in the series so that the current flowing
through the coils are same.

2. Check the conductor coil circuit. Make sure that all the connections are closed.

3. Set the zero position of the torque reading, imprinted on the torsional dyna-
monmeter by rotating the force indication knob [See Fig. 4.2 (point 8)].
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1. Zero setting knob

2. Zero indication for lever arms

3. Suspension system

4. Lever arm

5. Protective tube for lever arms

6. Eddy current attenuation, shortens
setting time

7. Rod for holding with standard
support material

8. Force indication knob

Figure 4.2: Experimental set-up for determining the torque due to a magnetic moment
in the magnetic field.

4. Set the lever arms [See Fig. 4.2 (point 4)] of the suspension system [See Fig. 4.2
(point 3)] to the zero position by rotating the zero setting knob [See Fig. 4.2
(point 1)]. The zero position for the lever arms [See Fig. 4.2 (point 4)] is
imprinted as the zero indication for lever arms [See Fig. 4.2 (point 2)] on sus-
pension system. Make sure that the metal band has the position for minimum
torque.

In the whole experimental procedure the torque, τ , has to be measured with
respect to the variables IH , I, and φ. Out of these three variable, keep any of the
two constant and make the table of the readings of τ for the different values of the
third variable. Hence, three tables are to be formed. Plot three graphs and do the
data fitting using least square method. Also obtain the Helmholtz coil constant c.

4.3.1 Precautions

The following precautions need to be taking while doing the experiment

1. The currunt should be varied very slowly.

2. The current in the Helmholtz coil must not exceed 3 Amperes and the current
in the inductor coil must not exceed 4.5 Amperes.

3. Better result should be achieved for smaller angles of torsion.



Experiment 5

Biot Savart law

Leena Aggarwal and Shekhar Das

5.1 Introduction

In 1820, Hans Cristian Oersted, a Danish scientist, observed that a compass needle
gets deflected when an electric current from a battery was switched on and off. He
found that when an electric current flows through a wire, it produces a circular mag-
netic field. This discovery provided the first link between electricity and magnetism.
In the same year Jean-Baptiste Biot and Félix Savart obtained an equation describing
the magnetic field generated by an electric current which relates the magnetic field to
the magnitude, direction, length, and proximity of the electric current. This equation
is now known as Biot-Savart‘s law.

5.2 The Experiment

5.2.1 Aim

The aim of this experiment is

1. To verify Biot-Savart’s law by showing that magnetic field produced is directly
proportional to the current passed in a coil.

2. To determine the variation of magnetic field with the distance from the center
of the coil at a constant current in air.

3. To compare the magnetic fields at the center of coils with different diameters
by passing same current and show that the field at the center is inversely pro-
portional to the radius of the coil.

5.2.2 Apparatus used

Optical bench, set of circular loops with holders, power supply 0−30 V DC, 0−20 A,
Gauss meter with axial probe, leads, saddle with micrometer. The apparatus is shown
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Figure 5.1: Apparatus used for the study of Biot-Savart‘s law.

in Fig. 5.1. The existence of magnetic field lines can be studied for a current carrying
conductor of any shape. The conductor can be an infinite long wire, a circular loop
or a cylindrical coil. In this experiment, we will be using circular loops of different
diameter. A current is passed through the loop and the magnetic field is measured
by using a digital gauss meter.

5.3 Theory

Consider a small element ~ds of a wire carrying a steady current I as shown in Fig. 5.2.
The magnitude of magnetic field d ~B at point P due to this small current element
should be proportional to the following factors:

d ~B ∝











I ~ds the strength of the current I and the length of the element ~ds.

1/r2 inverse square of the distance from the center of the wire to point P

sin θ angle between ~ds and r.

Therefore,the magnetic field d ~B produced
at point P by a small current element ~ds
of a wire carrying current I is given by

d ~B =
µ0I ~ds× r̂

4πr3
, (5.1)

where µ0/4π = 10−7 TmA−1. Figure 5.2: A current carrying wire
The magnitude of the field is given by

dB =
µ0Ids sin θ

4πr2
, (5.2)

where θ is the angle between ~ds, which indicates the direction of the current, and
~r. The total field B due to the entire current distribution of wire is obtained by
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Figure 5.3: The element Id~l of the circular loop of current sets up a field ~B at point
P on the axis of the loop.

integrating over all current elements I ~ds.

B =

∫

dB =
µ0

4π

∫

Ids sinθ

r2
. (5.3)

5.3.1 Biot-Savart‘s law for the circular current loop

Consider a circular loop or radius R carrying current I as shown in Fig. 5.3. Let us
calculate the magnetic field ~B at point P on the axis of loop at a distance x from the
center of the loop. The ~dB can be resolved into two components

(i) ~dB‖ along the axis of loop,

(ii) ~dB⊥, at right angle to the axis.

Only ~dB‖ component contributes to the total magnetic field at point P because

the component ~dB‖ for all current elements lie on the axis and add up directly, where

as the component ~dB⊥ point in different directions perpendicular to the axis, and
the sum of all ~dB⊥ for the complete loop is zero, from the symmetry consideration.
Therefore, the vector integral over all ~dB is equal to an integral over the parallel
components only. The magnitude of the field is given by

B =

∫

~dB‖, with d ~B‖ = dB cosφ =
µ0Ids cosφ

4πr2
, (5.4)

where we have used Eq. 5.2. From Fig 5.3, we have

r =
√
R2 + x2 cosφ =

R

r
=

R√
R2 + x2

.

Putting these values in Eq. 5.4 we get

B =

∫

~dB‖ =
µ0IR

4π(R2 + x2)
3

2

∫

ds
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=
µ0IR

2

2 (R2 + x2)
3

2

, (5.5)

where
∫

ds = 2πR, is the circumference of the loop.

Special Cases

1. For magnetic field at the center of the loop, i.e., substituting r = R in Eq. 5.5
we get

B =
µ0I

4πR2

∫

ds =
µ0I

2R
. (5.6)

2. If the distance of point P is much larger than the radius of the loop (i.e., x ≫ R).
The magnetic field is given by

B =
µ0IR

2

2x3
. (5.7)

5.4 Procedure

• Mount the circular conductor and hall probe holder on the optical bench.

• Mount the conductor loop on the holder.

• Mount the axial Hall probe in the holder for Hall probe. Align the Hall probe
towards the center of the circular conductor.

• Adjust the zero of the digital Gauss meter. It must be zero when no current is
passed through the conductor.

• Increase the current in steps of 2 A. Wait a minute after each increment to
stabilize the magnetic field. Then note down the corresponding magnetic field
value.

• Maximum current limit is 20 Amps for 0− 3V power supply.

• At I = 20A, move the Hall probe and measure the magnetic field as a function
of x.

• Repeat the same steps for another circular loops with different diameter.

5.4.1 Experimental observations

Tabulate the observations as given below

1. Magnetic field B of a coil as a function of current I
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Sr. 

no. 

Circular conductor of dia 40 

mm 

Circular conductor of dia 80 

mm 

Circular conductor of dia 120 

mm 

I (A) B (G) I (A) B (G) I (A) B (G) 

       

 

2. Magnetic field B of a coil as a function of axial distance x

5.4.2 Results

The results are plotted in Fig. 5.4.

• Fig. 5.4(a) shows a linear dependence of magnetic field B on the current I
flowing through the circular loop (i.e., B ∝ I).

• Fig. 5.4(b) shows the variation of magnetic field with the axial distance x from
the center of the loop. It also compares the magnetic field at the center of the
coils of different diameters (40, 80, and 120 mm) when a current I = 20 A flows
through them.

Further analysis: Calculate the magnetic field B at the center of each coil using the

data obtained, and show that B is inversely proportional to the radius of the coil.

5.5 Precautions

• Set all the knobs of the current source at zero before turning on or off the
system.

• Hall probe should align at the center of the circular loop.

• At zero current, Gauss meter should show zero value.

• Do not pass current for long time. It may cause connection problem due to over
heating.

• Wait for few minutes to stabilize the magnetic field during each measurement.

• Repeat steps 1-13 times for each coil to check the reproducibility.
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Figure 5.4: (a) Magnetic field B as a function of current I, and (b) Magnetic field B
as a function of distance x from the center for circular loops of various diameters as
indicated. The points are experimental observations and the solid lines are the best
fit to the data by a straight line y = mx + c and using Eq. (5.5) for (a) and (b),
respectively.



Experiment 6

Studying electromagnetic
induction using a magnet & a coil

Sudhanshu Shekhar Chaurasia and Jyotsana Ojha

6.1 The Experiment

6.1.1 Aim

The aim of the experiment is to help you understand the phenomenon of induced emf
in a circuit caused by change of magnetic flux in the circuit. The experimental setup
we have in our lab is designed by Prof. Babulal Saraf.

6.1.2 Basic setup

The setup consist of a magnet mounted on an arc of a semi-circle of radius say R0 as
shown in Fig. 6.1. The arc is rigid aluminium frame suspended at the center so that
whole frame can oscillate freely in its plane. The position of weights on the diagonal
arm can be altered in order to vary the period of oscillations. A coil has been wound
around the arc so that the magnet can pass freely through the coil. The amplitude
of swing can be read from the arc graduations. When the magnet moves through
and out of the coil, the flux of the magnetic field through the coil changes, inducing
an emf. The magnetic flux and the induced emf can be observed by connecting and
oscilloscope to the coil.

6.2 Theory

The Faraday’s second law tells us that the induced emf e is proportional to the rate
of change of flux φ and the direction of this emf opposes the change in flux that
produced it. Mathematically, this can be written as

e = −dφ

dt
. (6.1)
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The induced emf pulse e through the coil as a function of time t as observed using
oscilloscope is plotted in Fig. 6.2.

Figure 6.1: A magnet attached to
an oscillating system passes through a
coil periodically, generating a series of
emf pulses.

Figure 6.2: Plot of induced emf pulse
e through the coil with time t.

6.2.1 Measuring induced emf

The basic idea is to charge a capacitor through a diode and measure the voltage
developed across the capacitor. If the charging time RC (where R is the resistance
used plus the coil resistance and the forward resistance of the diode) is larger than
the time of generation of emf in the coil, the capacitor does not charge up to the peak
value in a single swing but takes around 10 oscillations to do so. When the charging
current ceases to flow in the galvanometer, the capacitor has been charged to the
peak value of the emf.

6.2.2 Measuring emf as a function of velocity

As the magnet starts far away from the coil, moves through it and recedes, the field
through the coil changes from a small value, increases to maximum and then becomes
small again. Moreover, the speed of the magnet is largest when it approaches the coil.
The magnetic field thus changes quite slowly with time when the magnet is far away
and rapidly as it approaches the coil. The flux varies similarly with time (since only
a constant ’effective area’ i.e the product of number of turns and area of the coil,
relates φ and B).

The induced emf is proportional to dφ/dt and is negative when φ is increasing and
positive when φ is decreasing. This variation of induced emf with time is plotted as a
sequence of two ”pulses”. Consider the effect of these pulses on the charging circuit.
The diode will conduct only during the positive pulse. At the first half-swing, the
capacitor charges up to a potential e1 given by 1

RC

∫

e(t)dt. During the next half-
swing, the diode will cutoff until the positive pulse reaches e1 and then capacitor will
charge up to a slightly a higher value say e2 and so on, in a few oscillations, the
capacitor will be charged up to the peak value e0 of the voltage pulse. This will be
indicated by the fact that the galvanometer stops showing any kicks.
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The induced emf can be written down as

|e| = dφ

dt
=

dφ

dθ
· dθ
dt

The term dφ/dθ depends on magnet and coil geometry. The second term dθ/dt is
deduced from the oscillation equation

θ = θ0 sin
2πt

T
, which gives

dθ

dt
=

2πθ0
T

cos
2πt

T
.

The peak voltage e0 corresponds to (dφ/dt)max. Since the cosine term does not differ
much from 1 for angles close to 2nπ,

|e0| =
(

dφ

dt

)

max

≈
(

dφ

dθ

)

max

2πθ0
T

(6.2)

Repeat experiments for different swing amplitudes θ0 and see if e0 is proportional
to θ0. Slide the weights and change T and repeat for different values of T . Check of
e0 is proportional to 1/T . Plot the observed emf e0 against the maximum velocity
(2πθ0

T
×R0).

6.2.3 Studying charge delivered due to induction

When the charging time (RC) of the capacitor is large compared with the pulse width,
the charge collected in one positive pulse is

q1 =
1

R

∫ t

0

e(t)dt = − 1

R

∫

dφ

The positive pulse corresponds to φ changing from the maximum to zero which leads
to

q1 =
φmax

R
(6.3)

V1 =
φmax

RC
(6.4)

The diode allows the capacitor to charge only for positive pulse. Arranging two
sets of charging circuits so that one capacitor charges up on the positive pulse and
the other on the negative pulse.

6.2.4 Studying electromagnetic damping

In the experiments considered so far, we have neglected the damping of oscillations.
There are many reasons for damping, for example, the air resistance, the friction at
the point of suspension etc. However, the most important and interesting source is
the induced emf in the coil. The direction of the induced emf always opposes the
change causing it (Lenz’s law). In this experiment it is the motion of the magnet
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which induces the emf. Therefore, the induced current flows in the coil in such a way
that it opposes the motion of the magnet. Since the velocity of the magnet changes
after each oscillation and so is the energy dissipation. If En is energy of the system
after n oscillations, then

En

En−1

= a which gives
En

E0

= an.

As the energy is proportional to the square of the amplitude, we have

θn
θ0

=

√

En

E0

= an/2. (6.5)

6.3 Procedure

Measurement of emf

1. Design the circuit as shown in Fig. 6.3 (Left).

2. Fix the masses at a specific length, for that particular length note the value
of peak voltage at different angles(θ0). Repeat this for 4-5 different values of
lengths.

3. When the magnet goes through the coil, magnetic flux changes and emf in-
duced which causes the deflection in galvanometer and charging of the capacitor.
When the capacitor is fully charged, the galvanometer stops showing deflection,
then press the switch to know the peak voltage on the voltmeter.

4. Now keep pressing the button until the voltmeter shows zero.

5. For a particular time period of oscillation(T ), plot peak voltage(e) vs angle (θ0).

6. For a particular value of deflection angle(θ0), plot peak voltage(e) vs. 1/T .

Figure 6.3: (Left) Schematic diagram of circuit. (Right) Schematic diagram of circuit
for charge comparison due to both positive and negative induced emf pulses.
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Charge delivered due to induction

1. Arrange things in the circuit such that RC is large and find the voltage acquired
by the capacitor in different number of positive pulses. Check if the relation (6.4)
for V holds and see if acquired voltage is proportional to the number of positive
pulses. (What is the condition under which this will be valid ?).

2. The diode allows the capacitor to charge only for positive pulse. Arrange two
sets of charging circuits as shown in Fig. 6.3(Right) so that one capacitor charges
up on the positive pulse and the other on the negative pulse. Verify that the
charges on the capacitors are nearly the same.

3. If you stop the oscillations (by hand) after a quarter oscillation (from the ex-
treme position of magnet to its mean position), only one capacitor charges up.
Try and find out if the sign of induced emf is as according to Faraday’s law.

Electromagnetic damping

1. First keep the coil open circuited and plot log θn as a function of n.

2. Do the same with a short circuited coil and also with a finite load such as 1k
resistor. Finally try a big capacitor as a load. At each swing, the capacitor keeps
charging up and the energy has to be supplied to build up this energy. Plot all
the experimental data on the same graph and interpret the plots obtained.

6.4 Reference

1. A. Singh, Y. N. Mohapatra, and S. Kumar, Am. J. Phys. 70, 424 (2002).



Experiment 7

Measurement of e/m by Millikan’s
method

Rajeev Kapri

7.1 The Experiment

This experiment is one of the most fundamental of the experiments in the undergrad-
uate laboratory. It is based on different forces acting on an electrically charged oil
drop moving in the homogeneous electric field of a parallel plate capacitor.

7.1.1 Aim

The aim of the experiment is to show that the electric charge exists as an integral
multiples of the charge on a single electron which we represent by “e”.

7.1.2 Apparatus

The basis setup is shown in Fig.

7.2 Theory

In 1851, George Gabriel Stokes derived an expression, now known as Stokes’ law, for
the frictional force – also called drag force – exerted on spherical objects with very
small Reynolds numbers (i.e. very small particles) in a viscous fluid. Due to this drag
force, the object attains a terminal velocity. Stokes found that for a spherical object
of radius r moving through a fluid of viscosity η, the drag force is given by

Fd = 6πηrv, (7.1)

where v is the terminal velocity.
Let r be the radius of the drop of oil of density ρo lying in the air of density ρa.

If g is the acceleration due to gravity. There are two forces acting on the oil drop
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1. The weight of the drop acting in the downward direction

Wd =
4

3
πr3ρog. (7.2)

2. The upward thrust

Wu =
4

3
πr3ρag. (7.3)

The resultant downward force experienced by the oil drop is given by

W = Wd −Wu =
4

3
πr3(ρo − ρa)g. (7.4)

If the drop attains a terminal velocity v then the downward force given by Eq. (7.4)
exactly balances the Stokes force given by Eq. (7.1), that is

4

3
πr3(ρo − ρa)g = 6πηrv, (7.5)

which gives the radius of the drop

r =

(

9ηv

2(ρo − ρa)g

)
1

2

. (7.6)

If Q be the charge on the drop and E is the electric field between the plates so that
the drop begins to move upward with a uniform velocity u, then on equating the
resultant upward force, qE − 4

3
πr3(ρo − ρag), with the Stokes drag force we get

QE − 4

3
πr3(ρo − ρag) = 6πηru.

On substituting the value of second term on the left hand side of above expression
from Eq. (7.5), and the expression for the radius from Eq. (7.6) we get

Q =
6πηr(v + u)

E

=
6πη

E

[

9ηv

2(ρo − ρa)g

]
1

2

(u+ v)

= (u+ v)

√
v

U
η3/2

18πd
√

2(ρo − ρa)g
. (7.7)

In the above expression we have substituted E = U/d, where U is the potential
difference applied across the plates of the capacitor which are kept at d distance
apart. Substituting the following

• The density of the oil used (olive oil) ρo = 918 kg/m3.

• The density of air ρa = 1.21 kg/m3.

• The acceleration due to gravity g = 9.80 m/s2.
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• The viscosity of air at room temperature and 1 atmosphere η = 1.81× 10−5 N
s/m2.

• The separation of the parallel plates d = 5× 103 m.

parameters in Eq. 7.7 we get

Q = (v + u) ·
√
v

U
× 3.818× 10−10 C, (7.8)

which can be used to calculate the amount of charge on the oil drop.

7.3 Procedure

• Spray the oil drops into the oil drop box from the spraying hole by means of a
sprayer.

• Select proper voltage (for example 200V) for the polar plates and drive out
some unnecessary oil drops until only few drops, which are moving down slowly,
remain in field of vision using a microscope.

• Select the drops with more or less the same radius (i.e., the same terminal
velocity). Generally it is suitable to select the medium sized oil drops (why?).
Use Eq. 7.6 to calculate the radius of the droplet.

• Measure the time t required for rising motion of the oil drop for a certain
distance (for example 2mm). Since we are seeing the inverted image formed by
the microscope, it will appear as if the drop is falling down.

• Move back the change-over switch to the middle gear and measure the time t
required for falling motion (appears as rising motion) of the same oil drop as
mentioned above for the same distance.

• For each drop measure

1. the terminal velocity v at zero voltage,

2. the rise velocity u at a definite voltage.

• After determining the velocities of the droplets, calculate the charge Q using
Eq. 7.8.

• Represent the results in form of a histogram (number of measurements within
a range of 10−20 C versus Q/(10−20 C)) and extract a value of the electronic
charge. The elementary electronic charge e is obtained by forming the largest
common divisor from the different charge values.

Note: The main object of the experiment is to demonstrate the quantization of
charge. Since some of the values of the physical constants above are approximate you
should not worry too much if the value of e you obtain is outside the error range you
predict from your measurement errors, (you will note the absence of quoted errors in
these quantities!). You may neglect the buoyancy of air.
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7.4 Precauations

• Keep the instrument in a semi dark room for performing the experiment.

• Level the instrument carefully with the help of level indicator.



Experiment 8

Capacitance of metal spheres

Rajeev Kapri

8.1 The Experiment

8.1.1 Aim

The aim of this experiment is to determine the capacitance of metal spheres of dif-
ferent diameters. The basic principle is to charge the metal spheres of different radii
by means of a variable voltage. The induced charges on the conductor are deter-
mined with a measuring amplifier. The corresponding capacitances are deduced from
voltage and charge values.

8.1.2 Apparatus

The apparatus consists of a high voltage (kV) power supply, metal spheres with
different diameters, an amplifier, an auxiliary capacitor, a voltmeter, BNC connector
and connecting cables. The experimental set-up to determine the capacitance of
spherical conductors is shown in Fig. 8.1.

8.2 Theory

If a spherical conductor with capacitance Cco is connected to a charging voltage V1

(in kV), the charge Q accumulated on the conductor is given by

Q = CcoV1. (8.1)

When this charged conductor is connected in parallel to an auxiliary capacitor of a
known capacitance Cca, the total capacitance of the circuit becomes (Cco + Cca) and
the same charge Q flows in it. If the voltmeter connected to the circuit measures
a voltage V2 (in volts), which were determined by means of a measuring amplifier
having amplification factor A, we have

Q = (Cco + Cca)V2. (8.2)
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power supply

High voltage 

Test sphere

Capacitor

BNC Connector
Earth connecting

cable

Conducting
Sphere

Auxiliary

Voltmeter

Electrometer & Amplifier

Figure 8.1: Experimental set-up to determine the capacitance of conduction spheres.

The capacitance of the conductor Cco is in pF, is much less than the capacitance of
the auxiliary capacitor Cca (10 nF), i.e., Cco ≪ Cca. Therefore, we can approximate
Eq. 8.2 by

Q ≈ CcaV2, (8.3)

without introducing much error. Equating Eqs. 8.1 and 8.3, we get

V2

V1

=
Cco

Cca

. (8.4)

Which means that if we plot V2 as a function of V1, we get a straight line whose slope
will be Cco/Cca, which can be obtained by data fitting. Since the value of Cca is given,
we can calculate the capacitance of the conductor.

Theoretically, the capacitance C of a sphere of radius R is given by

C = 4πǫ0R, (8.5)

where ǫ0 = 8.86× 10−12 F·m−1 (Farads per meter) is called the vacuum permittivity,

permittivity of free space or electric constant.

8.3 Procedure

1. The two spheres are held on a barrel base and insulated against the latter.
Separate them from each other by approximately 1 meter. Refer Fig. 8.1 for
connections.

2. Connect the smaller sphere by means of the high voltage cord over the 10 MΩ
protective resistor to the positive pole of the 10 kV output of the high voltage
power supply. The negative pole is earthed.

3. Ground both the spheres. Let both the electrometer and power supply be in
switched off position.
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4. Turn on the power supply and let adjust the knob to set the desired voltage.
Keep the test sphere grounded and the electrometer off while the smaller sphere
charges for some time.

5. Remove the earthing cable from the test (bigger) sphere and the small sphere
is briefly brought into contact with the test spheres to charge it. High voltage
always must be reset to zero after charging.

6. Connect the test (bigger) sphere to the electrometer using the BNC connector
provided.

7. Connect the voltmeter to the output of the electrometer and measure the voltage
across the auxiliary capacitor with capacitance Cca = 10nF which is connected
in parallel to the BNC connector.

8. Repeat steps 3 and above by increasing the charging voltage by 1 kV.

8.4 Results

• Obtain and plot the data of V2 (in volts) as a function of V1 (in kV) for metal
spheres of various diameters.

• Fit the data to obtain the slope. Find the capacitance of the conductor by using
Eq. 8.4 and the value of the slope.

• Compare the experimentally obtained conductance with the theoretical value
given by Eq. 8.5.

8.5 Precautions

• The power supply and the electrometer have internal circuits that can lead to
induction of charges and may affect the readings.

• Remember that you are working with a high voltage power supply. So be careful
while operating it.



Experiment 9

Dielectric constant of different
materials using parallel plate
capacitor

Anzar Ali and Abhinay Vardhan

9.1 The Experiment

9.1.1 Aim

The aim of the experiment is

• To evaluate the capacitance of a parallel plate capacitor.

• To measure the dielectric constants of different materials.

9.1.2 Apparatus Used

High voltage power supply, plastic capacitor, plastic plate 283x283 mm, glass plate,
10MΩ resistor, universal measuring amplifier, 0.22µF capacitor, voltmeter, connect-
ing cords, BNC cables and adapter.

The experimental setup is shown if Fig. 9.1 (left) and the corresponding circuit
diagram is shown in Fig. 9.1(right). The highly insulated capacitor plate is connected
to the upper connector of the high voltage power supply over the 10 MV protective
resistor. Both the middle connector of the high voltage power supply and the opposite
capacitor plate are grounded over the 0.22µF capacitor.

9.2 Theory

The electric charge Q accumulated on the conductor which is connected to a power
source is directly proportional to the potential difference V applied on it

Q = CV, (9.1)
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Auxiliary
Capacitor

Voltmeter BNC connector

Electrometer &
Amplifier

High voltage
power supply

Parallel plate
Capacitor

Dielectric
material

Figure 9.1: (Left) Experimental set-up to determine the dielectric constant of different
materials. (Right) Circuit diagram for the experiment.

where C is a proportionality constant known as the capacitance of the conductor.
It gives a measure of the ability of a body to store an electric charge. Higher the
capacitance, more charge it can store. The capacitance can be increased by placing
two conductors separated by a non conducting region which can either be a vacuum
or an electrical insulator material known as a dielectric. Such an arrangement of con-
ductors are called a capacitor. The capacitance C of such an arrangement depends on
the size and shape of the conductors and the separation between them. The simplest
arrangement is called a parallel plate capacitor in which a pair of flat conducting
plates of surface area A separated by a distance d. The capacitance of a parallel plate
capacitor is given by

C =
ε0A

d
, (9.2)

where ε0 = 8.86× 10−12 F·m−1 (Farads per meter) or (C2/Nm2 in SI units) is called
the vacuum permittivity, permittivity of free space or electric constant. The charge
stored in the parallel plate capacitor when a potential difference of V is applied on
its plates is given by

Q =
ε0A

d
V. (9.3)

This relation allows us to determine the electric constant ε0. If a material having
dielectric constant ε is inserted between the plates, the charge stored in the capacitor
becomes

Q =
εA

d
V. (9.4)

9.3 Procedure

There are mainly two parts of the experiment,

1. To observe the change in charge on the capacitors as we change the distance
betwen them, and
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2. To find the dielectric constant of different dielectric materials namely, i.e., air,
plastic board and glass plate

First task is to ensure that no charge is present on both the plates by reading
the potential across the 0.22µF capacitor, which should be zero. If not, ground the
plates so that the charge on each of them becomes zero. This can be done by using
the push to zero button on the universal measuring amplifier.

Variation as distance

1. Separate the two plates by a minimum distance d = 0.5 cm and fix the high
voltage power supply at a particular value.

2. Increase or decrease the distance d between the plates and observe the value of
potential across the 0.22µF capacitor.

3. The amount of charge Q stored in the capacitor can be calculated by using
Eq. 9.3. Plot a graph of Q as a function of 1/d. Fit the data to a straight line
and obtain the value of ε0 from the slope.

Dielectric Constant of different materials

The dielectric constant of various materials can be obtained using following steps:

1. Insert a plate made from the dielectric material and held it tightly between
the parallel plates of the capacitor. The thickness of dielectric plate can be
measured by the scale attached to capacitor plates.

2. Slowly increase the potential between the plates and read the potential across
0.22µF capacitor.

3. Convert the voltage into charge Q using Eq. 9.1 and plot a graph of charge Q as
a function of potential V . The data is fitted to a straight line and the dielectric
constant of the material can be calculated from the slope of the straight line.

9.4 Precaution

The following precautions have to be taken while doing the experiment:

1. Ground the plates before starting any part of the experiment to ensure no charge
resides on the capacitor plates or on the dielectric material.

2. Try to stay as far as possible from the capacitor plates to avoid any fluctuations.

3. Wait for sometime after changing the distance or the potential between the
plates for the charges to get stabilized.

4. Remember that you are working with a high voltage power supply. Therefore,
never touch the inside (metallic part) of the capacitors.



Experiment 10

Experiment with an Induction
Cooker

Arnob Mukherjee and Rajeev Kapri

10.1 The Experiment

10.1.1 Aim

To measure the efficiency of an induction cooker and observe the following physical
phenomena using it

• Levitation of a copper ring.

• Cooker as a transformer.

• Observing damped oscillations.

10.2 Introduction

The main element of the induction cooker is the induction coil (an electromagnet)
placed under the ceramic plate. It creates, together with the bottom of the pottery, an
electromagnetic circuit which causes only the lower base of the utensil to be heated.
It is necessary to use the utensils made from conductive, magnetized material as cast
iron, enamel and other specialized materials with a flat bottom, which can be 12−30
cm in diameter. Cooking is entirely safe as the surface of the plate remains cold
during cooking.

10.3 Induction Cooker Description

Induction cooker consists of following parts:
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Figure 10.1: A high-frequency electromagnetic coil inside an induction cooker.

• Specially designed induction coil to
generate electro magnetic field,

• a high frequency oscillator,

• power supply circuits,

• control and timer circuits and

• a ceramic cook top

The heart of an induction cooker is a high-frequency electromagnetic coil (see
Fig. 10.1, which produces a strong high-frequency electromagnetic field. This coil
is powered by a high-frequency oscillator (20 to 75 KHz). This coil is placed just
beneath a shiny ceramic plate on to which we put cooking vessels. Whenever a
magnetic material (iron, or alloys or iron) is placed over this coil high-frequency
magnetic field passes through the pot which generates heat within metal due to eddy
current and magnetic hysteresis. Eddy currents are induced in the magnetic material
due to the change in the magnetic field. This current flows in a direction which
opposes the main current and generates heat. Eddy current is directly proportional
to the frequency. Hence a high-frequency current can generate more heat.

Another phenomenon is magnetic hysteresis. In simple words, it is the resistance
of magnetic materials to the rapid change in magnetization. The inertia of magnetic
particles in magnetic materials due to the changing magnetic field generate heat
within the material. This heat is also directly proportional to the frequency of the
magnetic field.

Here we can see that the cooking vessel itself is the heat generating element and
the whole magnetic field is passing through it. Whenever you remove the vessel from
the heater or stops the current flow through the coil, heat generation will be stopped.

10.4 Experimental Procedure

10.4.1 Efficiency of the cooker

To find the efficiency of the induction cooker

1. Take 1 liter (mass m = 1 kg) of water in the pot and record its initial temper-
ature Ti.
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Figure 10.2: Apparatus to show induction cooker as a transformer. (Left) A 6 V bulb
connected in a holder with single coil. The number of turns in the coil increases if we
use bulbs of (Middle) 24 V, and (Right) 230 V.

2. Cover the pot with a lid and heat the water for time t (say t = 1 minute) using
the induction cooker kept at maximum power and calculate the amount of heat
generated by the induction cooker. This is the input heat Qin.

3. Record the final temperature Tf of the water. Take enough precaution so that
only small amount of heat and water vapour gets released outside the system.

4. The heat used to raise the temperature of the water from Ti to Tf can be
obtained to a first approximation using

Qout = mC (Tf − Ti) , (10.1)

where C = 4.187 kJ/kg K is the specific heat of water.

5. The efficiency of the induction cooker can then be obtained by

η =
Qout

Qin

× 100%. (10.2)

10.4.2 Levitation of copper ring

1. Take a copper wire (thickness 1 mm) which is coiled into a loop of diameter 10
cm and connected by a clamp.

2. Place a small metal pot filled with a little water (so not to overheat it) on the
plate inside the copper circle.

3. Observe and explain what happens when the cooker is switched on.

Note that this experiment should not last too long as the ring gets
enormously heated which can melt the insulation

An aluminium sheet can also be used in place of a copper wire and metal pot
to observer the same phenomena.

10.4.3 Cooker as a transformer

1. Attach a bulb socket having a light bulb of 6 V (e.g. 0,1 A) with the copper
ring (see Fig. 10.2(left)).
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Figure 10.3: Induction cooker connected to an oscilloscope.

2. Place this coil on the plate of the cooker and place the pot above the plate
(why?). Does the bulb glow?. How can you explain this.

3. Repeat the above arrangement with bulbs of different ratings, like 24 V , 230
V, and make them glow (see Figs. 10.2(middle) and 10.2(right)).

10.4.4 Observing Damped Oscillations

1. Connect one end of the single loop of the oscilloscope probe to the digital
oscilloscope and approach another end to the plate [it is enough to connect the
grounding conductor of the probe to the tip (see Fig. 10.3)].

2. Switch on the cooker. No need to place a pot onto the plate.

3. Observe the oscilloscope display. Can you explain it?

10.5 Precautions

1. Pay attention at any conductive rings on your hands if you handle any objects
in the distance of some centimeters above the plate. Short influence of the
electromagnetic field on your hands is not dangerous, but well conductive ring
in appropriate position can be heated to high temperature in few seconds.

2. While performing the experiment, it is necessary to pay attention as we are
working with dangerous induced voltage (even though the coil has only 40
turns)! We can only touch the bulb socket, not the wires which are not suffi-
ciently insulated.

3. Placing the induction cooker during the experiments on a matallic table is not
advisable.

4. Do not place empty utensils on a functioning induction stove since the utensil
can heat up rapidly.
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5. Do not place induction cook top near computers, laptops, etc. which are sensi-
tive to magnetic field.



Experiment 11

Equipotential Lines

Ketan Patel

11.1 Aim

To draw the lines of constant electric potential in water for different arrangements of
electrodes.

11.2 Theory

Let’s first understand the concept of electric potential. (Please go through this sec-
tion before starting the experiment and try to understand as much as possible. Some
the concepts discussed below will be introduced in your theory course of electromag-
netism.)

11.2.1 From the Coulomb’s law to the concept of potential

All of the electrostatics (study of forces between the static charges) follows from the
Coulomb’s law. It states that in vacuum the force on a point test charge Q due to a
single point charge q which is at distance r away from the test charge is given by

F =
Q

4πǫ0

q

r2
r̂ , (11.1)

where r̂ is a direction from the location of q to Q and ǫ0 is a constant called permitivity
of free space. If there exist more than one point charges q1, q2, q3, ..., qn at the
distances r1, r2, r3, ..., rN away from the test charge Q, the total force is can be
written as vector sum of forces created by each of qi, i.e.

F =
Q

4πǫ0

n
∑

i=1

qi
r2i
r̂i , (11.2)
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It is quite useful to rewrite the above formula as

F = QE with E =
1

4πǫ0

n
∑

i=1

qi
r2i
r̂i (11.3)

The E define above is called an Electric Field. It provides conceptual simplification
of the Coulomb’s law by providing test charge free interpretation of the force that is
created by given charge distribution. We highly encourage you to think more about

the interpretation of E.
If there are many charges confined in the small region (let’s say if ∆q is the total

charge confined in the region ∆x ∆y ∆z centered at the point x′ ≡ (x′, y′, z′)) then
the sum in eq. (11.3) is replaced by and integral and the electric field at some point
x ≡ (x, y, z) is given by:

E(x) =
1

4πǫ0

∫

ρ(x′)

r2
r̂ d3x′ , (11.4)

where r ≡ rr̂ = x − x′, ρ(x′) = ∆q/(∆x ∆y ∆z) is a charge density at point at x′

and d3x′ = dx′ dy′ dz′ is a volume element at x′. Eq. (11.4) gives an electric field at
a given point in space that is produced by charge distributions located everywhere
else. (The electric field at a point nearby you has contributions also from the charges
distributed in the entire universe!)

One can further simplify eq. (11.4). To achieve this, we use

r̂

r2
= −∇

(

1

r

)

, (11.5)

where ∇ = î ∂
∂x

+ ĵ ∂
∂y

+ k̂ ∂
∂z
. The advantage of the above equation is that it represents

the vector quantity (in the LHS) with a gradient of a scalar quantity (in the RHS).
[Show that the relation in eq. (11.5) holds if you haven’t already done it once in your
life.]

Using eq. (11.5) in eq. (11.4), one can write (note that the integration is over
primed coordinates so it is possible to write)

E(x) = −∇
(

1

4πǫ0

∫

ρ(x′)

r
d3x′

)

≡ −∇φ(x) . (11.6)

where

φ(x) ≡ φ(x, y, z) =

(

1

4πǫ0

∫

ρ(x′)

r
d3x′

)

. (11.7)

is called electric scalar potential. Because of its simple scalar nature, φ(x) can
easily be evaluated for given charge distribution. One can derive electric field and
force acting on a test charge in the presence of this field very easily from φ(x).

[Note: Using eq. (11.6), you can show (a) ∇×E = 0 and (b) The φ(x) and φ(x)+ c
lead to the same E(x) if c is a constant function in space.]
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(a) Charge configuration 1
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(b) Charge configuration 2
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(c) Charge configuration 3
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(d) Charge configuration 4
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(e) Charge configuration 5
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(f) Charge configuration 6

Figure 11.1: Equipotential lines obtained using eq. (11.7) for different configurations
of point charges.

Using eq. (11.7), we draw equipotential lines for some simple point charge config-
urations. Consider the point charges in two dimensions:

1. +q at (0, 0).

2. +q at (4, 0) and −q at (−4, 0).

3. +2q at (4, 0) and −2q at (−4, 0).

4. +q at (4, 0), (−4, 0) and −q at (0, 4), (0,−4).

5. +q at (5, 5), (2,−6), +3q at (−8,−2), −2q at (1, 2) and −3q at (−7, 7).

6. Try to guess this charge configuration from Figure.

The equipotential lines for the above charge configurations are shown in respective
figures below. In all the figures, the lines, in descending order of thickness, show the
φ = ±1, ± 0.5, ± 0.3, ± 0.2, ± 0.1 in units of q/(4πǫ0). The continuous lines
correspond to positive φ while dashed lines correspond to the negative values of φ.

• Compare the different equipotenrial lines in a given figure. Make also compar-
ison between the equipotential lines presenting same potential in two different
figures.
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• How does the strength of potential decrease in each configuration when moving
away fro the charges?

11.3 Experiment

As described in the above, the equipotential surface is an imaginary surface described
by the points at which the electric scalar potential possesses the same value. We
would be performing our experiment on a two dimensional surface (on a graph paper),
therefore we would talk about equipotential lines and not surface.

The equipotential lines are collections for points {(x1, y1), (x2, y2), ..., (xn, yn)} in
two dimensions for which the potential satisfies the condition φ(x1, y1) = φ(x2, y2) =
...,= φ(xn, yn).

Since it is experimentally difficult to probe the potential in vacuum or in air, we
would use water as a medium.

11.3.1 Procedure

You are given a D.C. power source, a voltmeter, different kind of electrodes (bars and
discs), a metal ring, a transparent container for water and a test probe.

1. Take two graph papers and place two bar electrodes with maximum distance
between them on the graph paper. Mark their position identically on both the
graph papers.

2. Place a clear transparent container on one of the graph paper. Place the bar
electrodes on already marked positions.

3. Don’t trust your instruments. Take a battery of known output voltage and
check if the voltmeter is calibrated correctly. If yes, using that voltmeter check
the actual output DC voltage of power source given to you. Note down this
actual supplied voltage.

4. Make connections as shown in the Fig. ??. Connect one electrode with +ve
and other with -ve output of power source. Connect the +ve of voltmeter with
test probe and -ve of voltmeter with -ve of power source.

5. Fill the container with normal water until the electrodes get half submerged
into the water. Place a test probe such that it touches the water.

6. Switch on the power source. Starting at some point, note down the potential.
Move your test probe in such a way that the potential remain constant. Note
down this positions and mark them on the other graph paper. Connects the
points representing the same value of potential.

7. Start at another point and do the same. Repeat this until you get a clear picture
of how potential is distributed over the entire surface for a given arrangement
of electrodes.
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8. Use imagination: Draw equipotential lines for at least four different config-
urations of electrodes. Use different electrodes, put them in the way you wish
(not necessarily in some symmetric pattern) and draw the equipotential lines.
You can use also more than 2 electrodes kept at different potentials. Also, place
the metal ring in the water and check the potential inside and outside of it.

11.3.2 After performing the experiment

• Observe carefully all the figures of equipotential lines that you have ob-
tained for different electrodes configuration. Try to interpret them.

• Make comparisons between theoretical equipotential lines drawn in Fig. 1
with the equipotential lines you obtain from the experiment.

• Go again through the theory section. Can you tell how the electric field
will look like in each case? Is it possible to derive electric field from the
potential configuration that you have drawn?

• What is your proposal for measuring equipotential surfaces in three di-
mensions?


