Complex Numbers - Solutions

Maths Workshop

1 Problems 1.1

Question 1.1 : -2 - i, 3 + 2iSum = (-2 - i) + (3 + 2i) = (-2 + 3) + i(-1 + 2) = 1 + iProduct = $(-2 - i)(3 + 2i) = -6 + i(-4 - 3) - 2i^2 = (-6 + 2) + i(-4 - 3) = -4 - i$ Question 1.2 : $1 - i^3$, $\frac{1}{(1 - i)^3}$ $1 - i^3 = 1 - i(i^2) = 1 + i($ $\frac{1}{(1-i)^3} = \frac{(1+i)^3}{(1-i)^3(1+i)^3} = \frac{1+3i+3i^2+i^3}{[(1-i)(1+i)]^3} = \frac{(1+3i-3-i)}{2^3} = \frac{(-2+2i)^3}{8} = \frac{-1+i}{4}$ Sum = $(1+i) + \left(\frac{-1+i}{4}\right) = \frac{(4-1)+i(4+1)}{4} = \frac{3}{4} + i\frac{5}{4}$ Product = $(1+i)\left(\frac{-1+i}{4}\right) = \frac{(1+i)(-1+i)}{4} = \frac{-1+i^2}{4} = \frac{-1-1}{4} = -\frac{2}{4} = -\frac{1}{2}$ **Question 1.3 :** 1 + i, 1 - iSum = (1 + i) + (1 - i) = (1 + 1) + i(1 - 1) = 2Product = $(1+i)(1-i) = 1 - i^2 = 1 - (-1) = 1 + 1 = 2$ **Question 2.1 :** 2 + 5iConjugate = 2 - 5i $\text{Inverse} = \frac{1}{2+5i} = \frac{2-5i}{(2+5i)(2-5i)} = \frac{2-5i}{4-25i^2} = \frac{2-5i}{29} = \frac{2}{29} + i\left(-\frac{5}{29}\right)$ **Question 2.2** : $3 + 2i^3$ $3+2i^3 = 3+2i(i^2) = 3-2i$ Conjugate = 3 + 2iInverse = $\frac{1}{3-2i} = \frac{3+2i}{(3-2i)(3+2i)} = \frac{3+2i}{9-4i^2} = \frac{3+2i}{13} = \frac{3}{13} + i\left(\frac{2}{13}\right)$ Question 2.3:ii = 0 + iConjugate = 0 - i = -iInverse = $\frac{1}{i} = \frac{-i}{i(-i)} = \frac{-i}{-i^2} = -i$

Question 3 : Give an example of a complex number that does not have a multiplicative inverse. Answer : 0 = 0 + 0i. Can we have other complex numbers ?

2 Problems 2.1

Question 1.1 : Which symbol represents |z| ? Answer : r

Question 1.2 : Which symbol represents amp(z) ? Answer : θ

Question 1.3 : Find a relation between x, y and r.

Answer : By Pythagoras theorem, we have $x^2 + y^2 = r^2$.

Question 1.4 : Find a relation between x, r and θ . Answer : From the right-angled triangle, we have $\frac{x}{r} = \cos \theta \implies x = r \cos \theta$.

Question 1.5 : Find a relation between y, r and θ . Answer : From the right-angled triangle, we have $\frac{y}{r} = \sin \theta \implies y = r \sin \theta$.

Question 1.6 : Find a relation between x, y and θ . Answer : From the last two relations, we have $\frac{y}{x} = \tan \theta$

Question 1.7 : Plot \overline{z} . *Answer :*

Question 1.8 : Verify that the complex number can be written as $z = r(\cos \theta + i \sin \theta)$. Answer : We have $x = r \cos \theta$ and $y = r \sin \theta$. So, $z = x + iy = r \cos \theta + ir \sin \theta = r(\cos \theta + i \sin \theta)$.

Question 2.1 : 2 + 5i

Using the relations that we have deduced above, we have Modulus = $\sqrt{2^2 + 5^2} = \sqrt{29}$ Amplitude = θ such that $\tan \theta = \frac{5}{2}$

Question 2.2: $\frac{1}{2+5i}$ $\frac{1}{2+5i} = \frac{2-5i}{(2+5i)(2-5i)} = \frac{2}{29} + i\left(-\frac{5}{29}\right)$ Modulus $= \sqrt{\left(\frac{2}{29}\right)^2 + \left(-\frac{5}{29}\right)^2} = \sqrt{\frac{4+25}{29^2}} = \sqrt{\frac{1}{29}}$ Amplitude $= \theta$ such that $\tan \theta = \frac{-5/29}{2/29} = -\frac{5}{2}$

Question 2.3 : 2-5iModulus = $\sqrt{2^2 + (-5)^2} = \sqrt{29}$ Amplitude = θ such that $\tan \theta = -\frac{5}{2}$

Question 3: Find a relation between z, \overline{z} and |z|. Answer: Let z = x + iy. Then $\overline{z} = x - iy$ and $|z| = \sqrt{x^2 + y^2}$. $z\overline{z} = (x + iy)(x - iy) = x^2 - i^2y^2 = x^2 + y^2 = |z|^2$. So, $z\overline{z} = |z|^2$.

Question 4: Find a relation between z^{-1} , \overline{z} and |z|. Answer: Let z = x + iy. Then $\overline{z} = x - iy$ and $|z| = \sqrt{x^2 + y^2}$. $z^{-1} = \frac{1}{x + iy} = \frac{x - iy}{(x + iy)(x - iy)} = \frac{x - iy}{x^2 + y^2} = \frac{\overline{z}}{|z|^2}$. So, $z^{-1} = \frac{\overline{z}}{|z|^2}$.

Question 5 : Find a relation between |z|, $|\overline{z}|$ and $|z^{-1}|$.

Answer: Let z = x + iy. Then $\overline{z} = x - iy$ and $z^{-1} = \frac{\overline{z}}{|z|^2}$. So, $|z| = \sqrt{x^2 + y^2}$ and $|\overline{z}| = \sqrt{x^2 + (-y)^2} = \sqrt{x^2 + y^2}$. So, $|z| = |\overline{z}|$. Now, $|z^{-1}| = \frac{|\overline{z}|}{|z|^2} = \frac{|z|}{|z|^2} = \frac{1}{|z|}$. So, $|z| = |\overline{z}| = \frac{1}{|z^{-1}|}$.

3 Problems 3.1

Question 1.1 : $e^{i\pi}$ Answer : $e^{i\pi} = \cos \pi + i \sin \pi = -1 + 0i = -1$ Question 1.2 : $e^{i\frac{\pi}{2}} \cdot e^{i\frac{\pi}{4}}$ Answer : $e^{i\frac{\pi}{2}} \cdot e^{i\frac{\pi}{4}} = \left(\cos\frac{\pi}{2} + i \sin\frac{\pi}{2}\right) \left(\cos\frac{\pi}{4} + i \sin\frac{\pi}{4}\right) = i\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}i}\right) = \frac{1}{\sqrt{2}}i + \frac{1}{\sqrt{2}}i^2 = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ Question 1.3 : $e^{i\frac{\pi}{3}} + e^{i\frac{\pi}{4}}$

Answer :

$$e^{i\frac{\pi}{3}} + e^{i\frac{\pi}{4}} = \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) + \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) + \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)$$
$$= \left(\frac{1}{2} + \frac{1}{\sqrt{2}}\right) + i\left(\frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}}\right)$$
$$= \frac{1 + \sqrt{2}}{2} + \frac{\sqrt{2} + \sqrt{3}}{2}i$$

Question 2.1 : $\left(\frac{3}{2} + \frac{3\sqrt{3}}{2}i\right)^3$ Answer :

$$\left(\frac{3}{2} + \frac{3\sqrt{3}}{2}i\right)^3 = 3^3 \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^3$$
$$= 3^3 \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^3$$
$$= 3^3 \left(\cos\pi + i\sin\pi\right)$$
$$= -27$$

Question 2.2 : $\left(\frac{1+i}{\sqrt{2}}\right)^4$

$$\left(\frac{1+i}{\sqrt{2}}\right)^4 = \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)^4$$
$$= \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^4$$
$$= (\cos\pi + i\sin\pi)$$
$$= -1$$

Question 2.3 : $(1+i)^{10}$ *Answer :*

$$(1+i)^{10} = (\sqrt{2})^{10}) \left(\frac{1+i}{\sqrt{2}}\right)^{10}$$

= $32 \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^{10}$
= $32 \left(\cos\frac{10\pi}{4} + i\sin\frac{10\pi}{4}\right)$
= $32 \left(\cos\left(2\pi + \frac{\pi}{2}\right) + i\sin\left(2\pi + \frac{\pi}{2}\right)\right)$
= $32 \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$
= $32i$

Question 3 : Calculate the roots of $x^3 - 1 = 0$ and plot them.

Answer : We will follow the process described previously.

- Step 1 : $x^3 1 = 0 \implies x^3 = 1$.
- Step 2 : $z = e^{i\theta}$ is a root of the above equation, where θ is a real number.

• Step 3 : Using de Moivre's theorem and properties of trigonometric functions, we get $\theta_k = \frac{2k\pi}{3}$ and corresponding solutions $x_k = e^{i\theta_k}$ for k = 0, 1, 2.

• Step 4 : We list the solutions explicitly :

$$x_0 = e^{i0} = \cos 0 + i \sin 0 = 1$$

$$x_1 = e^{i\frac{2\pi}{3}} = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$x_2 = e^{i\frac{4\pi}{3}} = \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

We plot the solutions as follows :

Question 4 : Verify that the complex roots are squares of each other. Answer : One way to verify would be to compute the squares and check. We will try to verify it in a different way, using de Moivre's theorem and Euler's formula. Check that $\left(e^{i\frac{2\pi}{3}}\right)^2 = e^{i\frac{4\pi}{3}}$. Now, $\left(e^{i\frac{4\pi}{3}}\right)^2 = e^{i\frac{8\pi}{3}} = e^{i\left(2\pi + \frac{2\pi}{3}\right)} = \cos\left(2\pi + \frac{2\pi}{3}\right) + i\sin\left(2\pi + \frac{2\pi}{3}\right) = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = e^{i\frac{2\pi}{3}}$. So, we see that the complex roots are squares of each other.

Question 5 : Denote the roots by $1, \omega$ and ω^2 . Calculate $1 + \omega + \omega^2$. Answer : Direct calculations show $1 + \omega + \omega^2 = 1 + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) + \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 0$. Alternatively, we know that ω is a root of the equation $x^3 - 1 = 0$. So, $\omega^3 - 1 = 0$. Factorising the expression on L.H.S. yields $(\omega - 1)(1 + \omega + \omega^2) = 0$. We know that $\omega \neq 1$, hence, we must have $1 + \omega + \omega^2 = 0$