$\frac{\text{PROBABILITY AND STATISTICS (MTH-202)}}{16/01/2019}$

	Name:	
	Registration number:	
Time: 15 minutes	QUIZ-I	Maximum Marks: 4

- 1. Three distinct coins are flipped simultaneously. Let H_i (for i = 1, 2, 3) denote the event that i^{th} coin shows Heads.
 - Describe the sample space. What is the size of event H_1 ?
 - Write the event $E = \{ All \text{ coins land Tails} \}$ in terms of H_i 's.

[2]

Solution:

• Sample space $\Omega = \{(X_1, X_2, X_3) : X_i \in \{\text{Heads, Tails}\}\}.$

Note that $H_1 = \{(H, H, H), (H, T, H)(H, H, T), (H, T, T)\}$, so $|H_1| = 4$.

• $E = H_1^c \cap H_2^c \cap H_3^c$ or $E = (H_1 \cup H_2 \cup H_3)^c$.

2. Let A, B be events in a sample space Ω . Prove that if P(A) = P(B) = 0, then $P(A \cup B) = 0$.

[2]

Solution: Since $A \cap B \subseteq A, B$, $P(A \cap B) \leq P(A), P(B) = 0$. But from axioms of probability, we know that $0 \leq P(A \cap B) \leq 1$, so $P(A \cap B) = 0$. This implies $P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0$.

Or,

Follows immediately from

 $P(A \cup B) \le P(A) + P(B) = 0$

and the fact that $0 \leq P(A \cup B) \leq 1$.