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1. People arrive at a queue according to the following scheme: During each minute of time
either 0 or 1 person arrives. In a minute, the probability that 1 person arrives is p and
that no person arrives is q = 1 − p. Answer the following questions (No explanation
required):

(a)(2 marks) Let C be the number of customers arriving in the first 10 minutes.

• P (C = 2) =
(

10
2

)

p2q8

• E[C] = 10p

(b)(2 marks) Let W be the time (in minutes) until the first person arrives.

• P (W = 5) = (1− p)4p

• E[W ] = 1/p

(c)(2 marks) Let T be the time (in minutes) until 4 people arrive.

• P (T = 10) =
(

9
3

)

p4q6

• E[T ] = 4/p



2.(3 marks) Consider two independent random variables: X ∼ Poi(λ) and Y ∼ Poi(µ) for λ, µ > 0.
Determine the probability mass function of Z = X + Y .

Solution:

P (Z = k) =
k

∑

r=0

P (X = r)P (Y = k − r)

=
k

∑

r=0

e−λλ
r

r!
e−µ µk−r

(k − r)!

=
e−(λ+µ)

k!

k
∑

r=0

k!

r!(k − r)!
λrµk−r

=
e−(λ+µ)(λ+ µ)k

k!

This implies Z ∼ Poi(λ+ µ).

3. Let X ∼ Unif([0, 1]).

(a)(2 marks) Determine the probability density function of the random variable X2.

(b)(1 mark) Compute E[X2].

Solution: (a) We first determine the distribution of X2. For 0 ≤ x ≤ 1,

P (X2 ≤ x) = P (X ≤ √
x) =

√
x

This implies, fX2(x) = 1
2
√
x
for x ∈ [0, 1] and 0 otherwise.

(b) E[X2] =
∫∞

−∞
x2fX(x)dx. So,

E[X2] =

∫ 1

0

x2dx = 1/3
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4.(2 marks) Let Y ∼ N (3, 9) and φ(x) = P (Z ≤ x), where Z ∼ N (0, 1). Compute P (Y > 3|Y > 1)
in terms of φ(2/3).

Solution:

P (Y > 3|Y > 1) =
P (Y > 3, Y > 1)

P (Y > 1)

=
P (Y > 3)

P (Y > 1)

=
P
(

Y−3
3

> 0
)

P
(

Y−3
3

> −2/3
)

=
P (Z > 0)

P (Z > −2/3)

=
1

2(1− φ(−2/3))

=
1

2φ(2/3)

5. Define C(X, Y ) = E[(X − E[X])(Y − E[Y ]]. Show that:

(a)(2 marks) C(X, Y ) = E[XY ]− E[X]E[Y ].

(b)(2 marks) For all a, b ∈ R, a2E[X2] + 2abE[XY ] + b2E[Y 2] ≥ 0.

(c)(2 marks) E[XY ]2 ≤ E[X2]E[Y 2].
(Hint: For A,B,C ∈ R, Ar2 + 2Br + C ≥ 0 ∀r ∈ R implies B2 ≤ AC)

Solution:

(a) E[(X − E[X])(Y − E[Y ])] = E[XY ] − E[XE[Y ]] − E[Y E[X]] + E[X]E[Y ] =
E[XY ]− E[X]E[Y ].

(b) Note that E[(aX+bY )2] ≥ 0. Expand and use linearity of Expectation to conclude.

(c) In part (b), take b = 1 and consider the quadratic in variable a. Then,

a2E[X2] + 2aE[XY ] + E[Y 2] ≥ 0

implies the result.
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