MTH202: Assignment 8

February 25, 2019

• Convolution: Let X and Y be two discrete random variables and let $Z = X + Y$. Then, the probability mass function of Z is given by the convolution of the mass functions of X and Y , given by:

$$
P(Z = k) = \sum_{r=0}^{k} P(X = r)P(Y = k - r)
$$

• Expectation of a continuous random variable: Let X be a realvalued continuous random variable with probability density f_X . Then, the expectation of X is given by:

$$
E[X] = \int_{-\infty}^{\infty} f_X(x) dx
$$

Exercises

- 1. An insurance company has 1000 policies on people of age 60. The company estimates that the probability that a person of age 60 dies within a year is 0.01. What is the number of claims that the company can expect from beneficiaries of these men within a year.
- 2. Check that convolution of probability mass functions is commutative and associative.
- 3. A die is rolled twice (independently each time) with outcomes X, Y . Let $Z = min(X, Y)$. Find the cumulative distribution function of Z in terms of cumulative distribution functions of X and Y .
- 4. A fair die is rolled until the first time T that a six turns up. Compute the following:
	- (a) $P(T > 3)$.
	- (b) $P(T > 6|T > 3)$.
- 5. If a coin is tossed a independently several times, what is the probability that the first head will occur after the fifth toss, given that it has not occurred in the first two tosses?
- 6. Consider two discrete random variables X and $Z \sim Poi(\lambda)$ such that $P(X = i|Z = k) = {k \choose i} p^{i} (1-p)^{k-i}$. What is $P(X = 0)$?
- 7. Let X be a real-valued random variable and $F_X(a) = P(X \le a)$ denote its cumulative distribution function. Then, prove the following:
	- (a) F_X is a non-decreasing function.
	- (b) $\lim_{a\to\infty} F_X(a) = 1.$ (Hint: consider a sequence of real numbers $b_n \to \infty$ and events $\{X \leq \}$ b_n }).
	- (c) $\lim_{a\to-\infty} F_X(a) = 0.$
	- (d) F_X is right continuous. (Hint: consider a sequence of real numbers $b_n \to b$ and events $\{X \leq \}$ b_n }).
	- (e) $P(s < X \le t) = F_X(t) F_X(s)$. (Hint:Write the event $\{X \leq t\}$ as a disjoint union of two other events.)
- 8. For what values of constant C do these functions define a probability density on R.
	- (a)

$$
f_X(x) = \begin{cases} C(x^3 - x) & \text{for } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}
$$

(b)
$$
f_X(x) = Ce^{-x^2/2}
$$
 for $x \in \mathbb{R}$.
\n(c)
$$
f_X(x) = \begin{cases} Ce^{-x/10} & \text{for } x \ge 0\\ 0 & \text{otherwise} \end{cases}
$$

9. Consider the following probability density functions and compute the Expectation.

$$
f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x \ge 0\\ 0 & \text{otherwise} \end{cases}
$$

(b)

(a)

$$
f_X(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}
$$

(c)
\n
$$
f_X(x) = \begin{cases} 3x^2 & \text{for } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}
$$
\n(d)
\n
$$
f_X(x) = \begin{cases} 1/x & \text{for } 1 \le x \le e \\ 0 & \text{otherwise} \end{cases}
$$

10. Consider a clock and let X denotes the time starting from $t = 0$ when the alarm goes off. Suppose $P(X \le t) = \frac{e^{-t/4}}{4}$ $\frac{1}{4}$. What is the expected waiting time until the alarm goes off.