
Explanation for the signed curvature formula

Some of you were asking me about the following formula for the signed curvature,
which you have come across on the internet.

γ̇(t) × γ̈(t)

‖γ̇(t)‖3

But the signed curvature is a scalar not a vector as this formula seems to imply,
so one needs to know how to interpret it. Furthermore, the above vector is
orthogonal, and not in the plane in which the curve lies (the signed curvature
makes sense only if the curve is planar), let alone be in the direction of the
signed normal. Also, the cross product seems flipped when compared with a
similar expression in our formula for curvature. All of these are explained below.

Exercises 2. and 3. a) from problem set 3 show that, given a prametrization
γ, you can compute the acceleration after you reparamtrize to a unit speed
parametrization γ̃ by,

¨̃γ(s(t)) =
γ̇(t) × (γ̈(t) × γ̇(t))

‖γ̇(t)‖4

Do not forget that a point γ(t) is represented by γ̃(s(t)) when using the arc
length paramatrization. In other words, the paramater t should be changed to
s(t) to refer to the same point if you are using the arc length parametrization
γ̃ instead of γ. Until this point, the derivation of the curvature and signed
curvature formulae are the same.

If you all you are interested in is the norm, then part b) of exercise 3 allows you
to simplify this formula very easily to obtain the curvature. However, the signed
curvature needs more work to derive as well as to interpret!

The above formula for ¨̃γ(s(t)) must be a vector normal to the unit tangent vector

T(s(t)) = ˙̃γ(s(t)) = γ̇(t)
‖γ̇(t)‖ (again, note the s(t) since we can only speak of the

unit tangent and signed normal etc. when using an arc length parametrization).

Using the above to replace the first γ̇(t) by ‖γ̇(t)‖T(s(t)), we can now write the
acceleration vector as:

¨̃γ(s(t)) =
T(s(t)) × (γ̈(t) × γ̇(t))

‖γ̇(t)‖3
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or equivalently, and what will prove more useful to compare it with the formula
that you have seen, as

¨̃γ(s(t)) = T(s(t)) ×
γ̈(t) × γ̇(t)

‖γ̇(t)‖3

Observe that γ̈(t)×γ̇(t)
‖γ̇(t)‖3 is normal to the plane so let us write it as a scalar multiple

of the signed unit normal to the plane, i.e. c(t)k̂, where k̂ := T(s(t)) × Ns(s(t))
(this is constant because the curve lies in a fixed plane!). The formula is now:

¨̃γ(s(t)) = T(s(t)) × c(t)k̂ = c(t)(T(s(t)) × k̂)

Now, try to use the right hand screw rule to see why T(s(t)) × k̂ = −Ns(s(t))
(You have used a similar reasoning when deducing all the cross product relations
between T(t), N(t), and B(t) for space curves). Note the minus sign! Therefore,

¨̃γ(s(t)) = −c(t)Ns(s(t))

This proves that c(t) = −κs(t). Since we can, why not remove the negative sign
(which we get because κs(t) = −c(t)), by just flipping the cross product, to get
γ̇(t)×γ̈(t)

‖γ̇(t)‖3 . Note that c(t) was simply the coefficient when writing γ̈(t)×γ̇(t)
‖γ̇(t)‖3 in

terms of k̂, which it is parallel to.

So this is how you interpret this formula, even though it is a vector: if your

calculations are correct, the cross product
γ̈(t)×γ̇(t)

‖γ̇(t)‖3 will be a coefficient of k̂.

That coefficient is the signed curvature as has been demonstrated above.
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