MTH 201, Curves and surfaces

Practice problem set 6

- 1. Which of the following subsets of \mathbb{R}^3 are open in \mathbb{R}^3 ?

- a) $\{(x, y, z) | x^2 + y^2 + z^2 = 1\}$ b) $\{(x, y, z) | x^2 + y^2 + z^2 < 1\}$ c) $\{(x, y, 0) | x^2 + y^2 < 1\}$ d) $\{(x, y, z) | x^2 + y^2 + z^2 \le 1\}$ e) $\{(x, y, 0) | x^2 + y^2 \le 1\}$ f) $\{(x, y, z) | 1 < x^2 + y^2 + z^2 < 2\}$ g) $\{(x, y, z) | 1 \le x^2 + y^2 + z^2 < 2\}$ h) $\{(0, y, z) | 1 < y^2 + z^2 < 2\}$ i) $\{(x, y, z) | 1 < y^2 + z^2 < 2\}$

- i) $\{(x, y, z) \mid |x| < 1\}$
- j) $\{(x, y, 0) \mid |x| < 1, |y| < 1\}$
- k) A finite set
- 2. A function, $f: X \to Y$, from any subset X of \mathbb{R}^m to any subset Y of \mathbb{R}^n is said to be continuous at p if given any real number $\epsilon > 0$ (however small, but strictly positive), there is a real number $\delta > 0$, so that for any point x, where $||x - p|| < \delta$, $||f(x) - f(p)|| < \epsilon$. On which points of their domain are the following functions continuous?

- a) $f: \mathbb{R}^2 \to \mathbb{R}^3, f(x, y) = (x^3, x + y, x)$ b) $f: D \to \mathbb{R}^3, f(x, y) = (x^3, x + y, 1/(x-6))$ where $D := \{(x, y) \mid x^2 + y^2 < 1\}$ c) $f: D \to \mathbb{R}^3, f(x, y) = (x^3, x + y, 1/x))$ where $D := \{(x, y) \mid x^2 + y^2 = 1\}$ d) $D := \{(x, y) \mid x^2 + y^2 < 1\}$ and $f : D \to \mathbb{R}^3$, where $f(x, y) = (x^3, x + y, 1/x)$
- for $(x, y) \neq (0, 0)$ and f(0, 0) = (0, 0, 0).
- e) Any function where the domain is finite