
MTH 201, Curves and surfaces

Practice problem set 5

1. Consider a (plane) curve parametrized by γ : (a, b) → R2 and a point on
that curve p = γ(t0). We will find a circle which best approximates the
curve at p, in the sense defined below:

a) Prove that if a circle is tangent to the curve defined by γ at p (“tangent”
means that the circle touches the curve and the circle’s tangent line
and the curve’s tangent line are the same at p), then its center must
lie on the line containing the vector Ns(t). For this and the part
below you may assume that a normal line of a circle contains its
center.

b) For some real number r, let Cr denote the circle of radius |r|, with
its center at the point p + rNs(t). Why is it tangent to the curve
at p? Note that Cr divides the plane into an interior and exterior
component and r may be negative, in which case the center is in a
direction opposite to Ns(t).

c) Prove that a point γ(t) avoids the interior component of Cr if and
only if d(t) := ‖γ(t) − (p + rN(t))‖2 ≥ r2 and avoids the exterior
component if and only if d(t) ≤ r2 (it always intersects the circle at p,
so at t0 you get r2). The square is only to allow us to express it as a
dot product. Since d(t) always positive, taking the square is harmless.

d) We say that Cr is too small if, at least in the vicinity of p, every point
on the curve defined by γ avoids the interior of Cr, i.e. there is an
ǫ so that for any t inside the interval (t0 − ǫ, t0 + ǫ), γ(t) avoids the
interior of Cr. Use the previous part to rewrite this in terms of the
function d(t), which is defined above. Why does that mean that d
has a local minimum at t0? Remember that a function has a local
minimum at t0 if for t in the vicinity of t0, f(t) ≥ f(t0)

e) We say that Cr is too big if, at least in the vicinity of p, every point
on the curve defined by γ avoids the exterior of Cr, i.e. there is an
ǫ so that for any t inside the interval (t0 − ǫ, t0 + ǫ), γ(t) avoids the
exterior of Cr. Use the previous part to rewrite this in terms of the
function d(t), which is defined above. Why does that mean that d
has a local maximum at t0?

f) Prove that no matter what r is, d′(t0) = 0. (By now you should be in
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the habit of expressing such derivatives in terms of that orthonormal
basis Ns(t) and T(t) so that you can easily identify which coefficients
cancel).

g) Remember that a function f has a local maximum at t0 if f ′(t0) = 0
and f ′′(t0) < 0; it has a local minimum at t0 if f ′(t0) = 0 and f ′′(t0) >
0. Compute d′′(t) and use parts d) and e) above to show that Cr would
be too big if r > 1/κ(t0) and too small if r < 1/κ(t0). Therefore, a
circle of radius 1/κ(t0) may be thought of as best approximating the
curve at p. Such a circle is called an osculating circle and its radius
is 1/κ(t0) is called the radius of curvature.

Space curves

2. Prove that if f : (a, b) → R
3 and g : (a, b) → R

3 are two vector valued
functions and h(t) = f(t) × g(t) then ḣ(t) = ḟ(t) × g(t) + f(t) × ġ(t).

3. Prove that for a space curve parametrized by a unit-speed parametrization,

γ : (a, b) → R
3, N(t) := γ̈(t)

κ(t) = Ṫ (t)
‖T (t)‖ is a unit vector which is orthogonal

to the unit tangent vector T(t) = γ̇(t)
‖γ̇(t)‖ . Note, here κ is the curvature and

not the signed curvature, which only makes sense for plane curves. Note
also that all this makes sense only if γ is regular and κ(t) 6= 0 (it appears
in the denominator!)

4. Consider the vector B(t) := T(t) × N(t). What is ‖B(t)‖? Why does the
set {T(t), N(t), B(t)} form an orthonormal basis of R3?

5. You know the cross product of two vectors written in terms of a basis if
you know the cross products of the respective basis elements. Therefore, it
will be useful to know B(t) × T(t) and N(t) × B(t) (by the previous part,
you already know T(t) × N(t) = B(t) by the definition of B). What are
they? Be careful of the order and the resulting sign!

6. Show that if v1, v2, and v3 form an orthonormal basis in R
3 and if a vector

w is orthogonal to both v1 and v2, it must be a scalar multiple of v3.

7. Show that Ḃ(t) is a scalar multiple of N(t).

8. Since any vector valued function can be written as a linear combination of
T(t), N(t), and B(t), we can know its derivative if we know Ṫ(t), Ṅ(t),
and Ḃ(t). Express the following vector valued functions in terms of the
basis elements T(t), N(t), and B(t) so that your coefficients involve either
κ(t) or τ(t) (Try to use 2. and 5. You will need to use 5. more than once.)

a) Ṫ(t)

b) Ṅ(t)

c) Ḃ(t)
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9. Prove that the torsion of a curve is the constant function 0 if and only if
the curve lies on a plane.

10. Prove that if the torsion and curvature of a curve are always 0, then the
curve must lie on a circle (Prove that the curve is at a fixed distance from
a particular point, and that therefore it lies on a sphere. Let the osculating
circle help you guess what the point should be! By the previous exercise
you know that it also lies on a plane so it lies on the intersection of a
sphere and plane which is a circle).

11. We define the torsion by choosing some unit speed parametrization. Prove
that we get the same answer even if we choose a reparametrization that
is also a unit speed parametrization (Remember how two unit speed
parametrizations relate with each other. First find out how their respective
unit tangents, unit normals, and unit binormals relate).

12. The following parts will help you to prove that if you are given two
functions, t and k, so that k(s) > 0, then you will be be able to find a curve
parametrized by some unit-speed parametrization γ so that the curvature
κ(s) = k(s) and the torsion τ(s) = t(s).

a) Prove that for for any unit vector valued function T (s), you can
always find a parametrization γ so that γ̇(s) = T (s). (Therefore, we
try to find a T (s) so that the resulting curve has the given curvature
and torsion. To find T we try and characterize Ṫ , which is where the
k and t would be useful if they are to be the curvature and torsion
functions.)

b) Prove that if, in addition to T , there are vector valued functions N
and B, that relate with T as follows:

(1)
Ṫ (s) = k(s)N(s)

(2)
Ṅ(s) = −k(s)T (s) + t(s)B(s)

(3)
Ḃ(s) = −T (s)N(s)

then for any γ so that γ̇(s) = T (s), N(s) will be the principal normal
and B(s) will be the binormal of γ as long as T (s), N(s), B(s) are
each unit vectors that are othogonal to each other.

c) The theory of differential equations guarantees that there will be
a T (s), N(s), and B(s) satisfying equations (1) to (3) but part b)
also requires that these solutions be unit vectors and orthonormal
for each s. Let us assume that for some initial value s0, T (s0) = v1,
N(s0) = v2, and B(s0) = v3 where v1, v2, and v3 are unit vectors
that are orthogonal to each other. Let us denote

f1(s) = N(s) · N(s)
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f2(s) = T (s) · B(s)

f3(s) = T (s) · N(s)

f4(s) = T (s) · T (s)

f5(s) = N(s) · N(s)

f6(s) = B(s) · B(s)

Write each f ′
i in terms of the fi to get a system of differential equations

characterizing fi. Note that in addtion, these functions also satisfy the
intitial conditions f1(s0) = f2(s0) = f3(s0) = 0 and f4(s0) = f5(s0) =
f6(s0) = 1. Now prove that if instead we took f ′

1(s) = f ′
2(s) = f ′

3(s) =
0 and f ′

4(s) = f ′
5(s) = f ′

6(s) = 1 (all constant functions), they would
also satisfy the same system of differerntial equations fi and the same
initial conditions (the latter is very obvious but the former is where
you should see terms cancelling out if you do everything correctly).
How does the uniqueness of a the solution of a diffferntial equations,
given the intial value, help to conclude that if vi are orthonormal,
then T (s), N(s), and B(s) are orthonormal for all s? Combined with
the earlier parts, you should see how to get a curve with the given k
and t as curvature and torsion.

13. The following parts will help you to prove that if a two curves, paramatrized
by unit speed parametrizations γ1(t) and γ2(t), respectively, have the same
curvature and torsion functions, say, κ(t) and τ(t), then they will differ by
a rigid transformation.

a) Prove that if T1(t) = T2(t), where T1(t) and T2(t) are the unit
tangents of γ1 and γ2, respectively, then γ2(t) is a translate of γ1(t).

b) Let v and w be unit vectors. Prove the inequality v · w ≤ 1 and also
show that it is an equality if and only if v = w.

c) Let N1(t) and N2(t) denote the principal normals of γ1 and γ2,
respecitively. Let B1(t) and B2(t) denote the binormals of γ1 and
γ2, respecitively. Prove that if T1(t0) = T2(t0), N1(t0) = N2(t0),
and B1(t0) = B2(t0), then T1(t) = T2(t), N1(t) = N2(t), and
B1(t) = B2(t) for all t. (Hint: use the previous part to show that this
happens if and only if the T1(t)·T2(t)+N1(t)·N2(t)+B1(t)·B2(t) = 3.
You know that this is satisfied for t = t0 so all that remains is to show
that the derivative is 0. This is where you will use that the curvatures
and torsion are the same.)

d) The previous part is saying that if you align the tangent, normal,
and binormal of one curve with the tangent, normal, and binormal of
the other curve at one point, then they also align for all other points
t. Why can you use only two rotations to make them match for the
point γ(t0)?
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