MTH 201, Curves and surfaces

Practice problem set 4

. Compute the signed curvature of the circle parametrized by ~(t) =
(5cos(t), —bsin(t)).

. If v : (a,b) — R? parametrizes a curve, compute the curvature of the curve
parametrized by 7(¢) = v(—t) in terms of the curvature of v. What about
the relation between the signed curvatures of v and 47

. Compare the signed curvatures of a curve and its reflection, i.e. y(¢) and
().

. By finding a unit speed parametrization of a circle of radius r, compute
its curvature. Let v(t) be some other constant speed parametrization of
a circle of radius r, where v := ||¥(t)] is the (constant) speed, and prove
that ||5(t)|| = v?/r (Do you recognize the significance of this?).

. Can you draw a curve whose signed curvature in terms of a unit speed
parametrization is k4 (t) = t7

. Prove that if «(t) is a unit speed parametrization and it is periodic with
period T, i.e. y(t +T) = ~(t), then the integral fOT ks(t) is always an
integer multiple of 2w. Hopefully, from the 27 in the expected answer, you
have guessed the formula of k4(t) that will prove useful!

. Examine the formula for the curvature function to check if it is smooth
everywhere. If not, when is it not smooth? What about the signed
curvature? Why is there a difference?

. Derive a formula for the signed curvature k4(t) in terms of any given
parametrization v(¢) (not necessarily an arc-length parametrization). Hint:
this is almost exactly like the derivation of the general formula for the
curvature that you worked out in questions 2 and 3 of the last exercise set.
This time, try deriving it without looking at the sub-parts.

. Prove that any curve with constant curvature k£ # 0 must be a circle
of radius 1/k. Hint: During the last lecture we proved that we can
always find an arc length parametrization of a curve so that the curvature
function matches a given function k(¢). The proof essentially derived a
formula for the parametrization in terms of k(¢). Use that to compute the
parametrization when you know that k() is constant.



10.

11.

Recall that the signed unit normal, N(¢), and the unit tangent vector,
T(¢), of a curve are orthogonal to each other for each point (¢) of a planar
curve. Therefore, any vector at the point v(¢) can be written as a linear
combination of these two vectors. Remember that the coefficients of a
vector, written in terms of an orthonormal basis, can be computed by
taking the dot product with the corresponding basis vector. Use this to
compute the following vectors in terms of linear combinations of T(¢) and
N, (t). In your answer, all the coefficients will involve the signed curvature
function k4(t).

a) T(t)
b) N (t)
o) N (t)

For a regular plane curve parametrized by 7(t), the curve parametrized by
~Ye(t) := v(t) + ¢Ng(t) for some fixed number ¢, is said to be “parallel to
the curve parametrized by ~(t)”.

a) What is the curve parallel to a circle of radius r?

b) Prove that the 4.(t) is a scalar multiple of ().

¢) Compute the signed curvature of v.(t) in terms of the signed curvature
fuction, k(t), for v. You will need to assume that k(t) # 1/c. Hint:
Just as in the previous exercise, it may be useful to express 4.(t) in
terms of N(¢) and T(t), where N (¢) and T(t) are the unit normal and
unit tangent vectors, respectively, of ’y(t) and compute the coefficients
by taking the dot product with appropriate vectors.

12. If a curve parametrized by « has signed curvature function ks (t), what is

the signed curvature of the curve parametrizaed by c¢y(t), where ¢ is some
constant?



