
MTH 201, Curves and surfaces

Practice problem set 3

1. Compute the curvature function of the curve (after finding its arc length
parametrization) parametrized by γ(t) = (a cos(t), a sin(t), bt) for some
fixed real numbers a > 0 and b > 0, t ∈ R.

2. During the lecture, the formula for the curvature was expressed in terms
of the unit speed (arc length) parametrization. However, finding the arc
length as a formula may not be easy (let alone inverting it) because it is
expressed as an integral (try deriving a formula for the arc length of an
ellipse to see how tough it can be!). The following steps will rephrase the
formula in terms of any parametrization that you use to define the curve,
bypassing the need to find the arc length. For this exercise, let γ denote
the original parametrization and γ̃ denote the unit speed parametrization.
Therefore, γ̃(t) = γ(s−1(t)), or equivalently, and perhaps more usefully for
the computations below, γ̃(s(t)) = γ(t).

a) Compute s′′(t) in terms of γ̇(t) and γ̈(t). (You might find it easier to
first differentiate (s′(t))2 because it can be expressed as a dot product).
Can you see why this make sense intuitively? (Hint: interpret your
answer as “s′′(t) is the magnitude of the component of the acceleration,
γ̈(t), in the direction of the velocity vector, γ̇(t)”. Compare this
with the observation that for a unit speed parametrization γ̃, the
acceleration vector, ¨̃γ(t), is orthogonal to the velocity vector, ˙̃γ(t)).

b) Show that γ̇ and ˙̃γ are related by ˙̃γ(s(t))s′(t) = γ̇(t), or equivalently,
˙̃γ(s(t)) = γ̇(t)

‖γ̇(t)‖ . Observe that this formula is confirming the in-

tuitively obvious fact that if you reparametrize by the unit speed
parametrization, the direction of the velocity vector at a given point
on the curve does not change. Only its magnitude is scaled down
to 1. Remember that a point on the curve represented by γ(t) is
represented by γ̃(s(t)) when you use the unit speed parametrization.

c) Use the previous part to show that ¨̃γ(s(t)) = γ̈(t)− ˙̃γ(s(t))s
′′(t)

(s′(t))2

d) Use a), b) to replace all occurences of s and γ̃ on the right hand

side of c) to show that ‖¨̃γ(s(t))‖ = ‖‖γ̇(t)‖2
γ̈(t)−γ̇(t)(γ̇(t)·γ̈(t))‖

‖γ̇(t)‖4 . Note

that ‖¨̃γ(s(t))‖ is the curvature of the curve at the point γ̃(s(t)). The
same point, in terms of the usual parametrization γ, is simply γ(t)
(because γ̃(s(t)) = γ(t)). Therefore, the curvature at the point γ(t)

on the curve may be computed directly by ‖‖γ̇(t)‖2
γ̈(t)−γ̇(t)(γ̇(t)·γ̈(t))‖

‖γ̇(t)‖4 ,
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even if γ may not be a unit speed parametrization. Can you see why
this big formula reduces to ‖γ̈(t)‖ is we assume that γ is a unit speed
parametrization?

3. This exercise will help you to simplify the formula that you derived above.

a) Recall the triple product identity u × (v × w) = (u · w)v − (u · v)w
for any three vectors u, v, and w. Can you recognize its right hand
side in the the expression ‖γ̇(t)‖2γ̈(t) − γ̇(t)(γ̇(t) · γ̈(t)), which will
enable you to rewrite it as γ̇(t) × (γ̈(t) × γ̇(t))? Do not forget that
‖v‖2 can be written as a dot product!

b) For orthogonal vectors v and w, why is ‖v × w‖ = ‖v‖‖w‖? Use
this to show that the curvature of a curve parametrized by γ can

be computed at the point γ(t) by ‖γ̈(t)×γ̇(t)‖
‖γ̇(t)‖3 . You would have had

to use the fact that γ̇(t) is orthogonal to γ̈(t) × γ̇(t). Why are they
orthogonal?

4. Use the formula derived above to compute the curvatures of the curves
parametrized by the following:

a) γ(t) = (t, cosh(t)).
b) γ(t) = (t3 − t, t2).
c) γ(t) = (sin3(t), cos3(t)).
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