
MTH 201, Curves and surfaces

Practice problem set 12

1. Compute the second fundamental form, principle curvatures, mean cur-
vature, and the Gaussian curvature of a surface of revolution. Remember
that its surface patch is σ(x, y) = (f(x)cos(y), f(x)sin(y), g(y)). Use this
to compute these quantities for the cylinder and the sphere. (Rememeber
that the eigenvalues of a matrix A can be computed by computing the
roots of the polynomial, det(xI − A). This will help you to compute the
principle curvatures. This will help you to compute the principle curvatures
which can also be used to compute the mean and Gaussian curvatures.)

2. Consider a plane intersecting a surface S. If the plane is perpendicular to
the tangent space of S at each point lying on the intersection, then the
intersection is a curve that is called a normal section of the surface. Prove
that such a curve has zero geodesic curvature.

3. Generalize the previous exercise as follows: assume that the plane is not
perpendicular, but makes an angle θ wih the tangent plane at S. Prove
that curvature of the curve of intersection is κn/sin(θ). What about the
geodesic curvature?

4. Compute the normal curvature of any curve on the sphere. Can you
interpret the answer physically? Using this, prove that curves on the
sphere that have constant geodesic curvature are circles.

5. Compute the geodesic curvature of any circle on a sphere. (A circle on the
sphere can always be obtained by intersecting it with a plane.)

6. Prove that the geodesic curvature of a curve in a plane (treated as a surface
in R

3) is equal to the plane curvature.

7. Prove that the Gussian and mean curvatures are smooth functions. This
will need you to recall the way we defined smooth functions on a surface.

8. Remember that κn = 〈γ̇, γ̇〉′. Rather than using the usual basis for the
tangent space, let us use an orthogonal basis of eigenvectors of Wp,S . Why
does such a basis always exist, even if the principle curvatures are not
distinct? Prove that

a) If γ̇ = αt1 + βt2, then κn = κ1α2 + κ2β2.
b) If γ is a unit speed parametrization then α = cos(θ) and β = sin(θ),

for some θ. Use part a) to prove that the principle curvatures are
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the maximum and minimum normal curvatures of all curves passing
through the point.

9. The following parts will prove that if every point on a surface is umbilic,
then must be a part of a plane or a sphere. Let σ : U → S be a surface
patch of a surface S.

a) Prove that if the two principle curvatures are equal for every point
in U , then the curvature is constant. Denote κ := κ1 = κ2 (If the
principle curvatures are the same, then Wp,Sv = κ1v for every vector
v.)

b) Prove that if n(x, y) is constant, then σ(x, y) lies on a plane (Of
course, the normal to the plane ought to be n(x0, y0) for some (x0, y0)
so you just need to show that n(x, y) ·(σ(x, y)−σ(x0, y0)). We tackled
a similar problem for curves, and here too you have an opportunity of
proving that equality by examining the derivative of the expression,
and its value at one point.)

c) Prove that if κ = 0, then σ(x, y) lies on a plane.
d) Prove that if κ 6= 0, then σ(x, y) lies on a sphere. (Apart from

the method during the lecture, you can also derive this by making
a reasonable guess of the center of the sphere. It should be c =
σ(x0, y0) + 1

κ
n (because, as question 1 proves, the principle curvature

of a sphere is the reciprocal of the radius). Therefore, you merely have
to prove that the ‖σ(x, y) − c‖ is constant. As usual, differentiating
may help!)

10. The following parts will provide a geometric interpretation for the Gaussian
curvature. σ : U → S is a regular surface patch of a surface S of Gaussian
curvature K.

a) Show that nx × ny = Kσx × σy, thereby expressing the cross product
in terms of the standard basis of σx and σy.

b) Prove that as long as K is non-zero, n is a regular surface patch for
the sphere of radius 1.

c) Let f : U → R and g : U → R, where U is an open subset of R2, be
continuous functions. If Bδ is an open ball of radius δ in U , centred

around (0, y0), then prove that lim
δ→0

∫
Bδ

f(x, y)g(x, y)dxdy
∫

Bδ

g(x, y)dxdy
= f(x0, y0)

d) Use the fact that K is continuous and the observations in the previous

parts to prove that lim
δ→0

∫
Bδ

nx × nydxdy
∫

Bδ

σx × σydxdy
= K(x0, y0). Note that the

integral in the denominator is simply the area of the region σ(Bδ) on
the surface. Why is the integral in the numerator the area of that
image of that region, but on the sphere, under the Gauss map?

e) Use this interpretation to compute the Gaussian curvature of the
plane, cylinder, and sphere.
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11. Since a surface patch, σ, is smooth, σxxy = σxyx. However, each of the
vectors σxxy and σxyx can be written in terms of the standard basis σx,
σy, n, and, therefore, by comparing coefficients you should discover some
relations between L, M , N , and Γk

ij . From one of them you will be able
to extract an expression of the Gaussian curvature in terms of only E, F ,
and G (remember that the Christoffel symbols Γk

ij are only in terms of E,
F , and G).
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