
Written assignment 3. Due Wednesday October 21. Solutions.

(1) Using ǫ-δ definition, prove that

lim
(x,y)→(0,0)

xy
√

x2 + y2
= 0.

Solution. Given ǫ > 0, we need to find δ > 0 such that when
√

x2 + y2 < δ,
we have
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< ǫ.

First of all, note that x2 + y2 ≥ y2, so
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x2 + y2 ≥
√

y2 = |y|. Then
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= |x|.

Then we can take δ = ǫ. Indeed, suppose (x, y) is any point such that
√

x2 + y2 < δ. Then in particular |x| < δ, and then by the inequality we
just proved above, we have
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≤ |x| < δ = ǫ,

so we have shown that for our point (x, y), |f(x, y)| < ǫ; since (x, y) was an

arbitrary point satisfying
√

x2 + y2 < δ, this completes the proof.

(2) Using ǫ-δ definition, prove that f(x, y) = x2y is a continuous function on
R

2.
Solution. We need to show that for any point (a, b) ∈ R

2, our function
is continuous at (a, b). This means, that for any given ǫ > 0, there ex-
ists δ (which can depend on ǫ, a, and b), such that for any point (x, y)
in the ball of radius δ centred at (a, b), we have |f(x, y) − f(a, b)| < ǫ.
Concretely, this means: we need to find δ > 0, such that the inequality
√

(x − a)2 + (y − b)2 < δ implies the inequality |x2y − a2b| < ǫ.
In order to find such δ, we note that it would be very convenient to

rewrite the expression x2y − a2b in such a way that we would see the dif-
ferences (x−a) and (y− b) in it (because then we can make these less than
δ, estimate the remaining terms, and find the right δ). So, we do some
algebra:

x2y − a2b = x2y − a2y + a2y − a2b

= (x2 − a2)y + a2(y − b) = (x− a)(x+ a)y + a2(y − b).

Using triangle inequality, we get:

|x2y − a2b| ≤ |(x− a)(x+ a)y|+ |a2(y − b)|.
Next, note that when x is close to a (say, |x−a| < 1), then |x+a| ≤ |x|+|a| ≤
(|a|+ 1) + |a| = 2|a|+ 1. Similarly, if |y − b| < 1, then |y| < |b|+ 1. So, let
us make sure that whatever δ we choose in the end, it should be less than
1. Then for any (x, y) inside the disc of radius δ around (a, b), we will have:

|x2y− a2b| ≤ |(x− a)(x+ a)y|+ |a2(y− b)| ≤ |x− a|(2|a|+ 1)(|b|+ 1)+ |y− b||a|2.
1
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Now, let us take

δ = min

(

1,
ǫ

(2|a|+ 1)(|b|+ 1) + |a|2
)

.

(Note that 1 appears there because of the above discussion: for our esti-
mates to work, we need δ ≤ 1).

Now, finally, we can put it all together: suppose
√

(x− a)2 + (y − b)2 < δ.

Then by the above estimates, we have:

|x2y−a2b| ≤ |x−a|(2|a|+1)(|b|+1)+ |y−b||a|2 < δ
(

(2|a|+ 1)(|b|+ 1) + |a|2
)

= ǫ,

and the proof is completed.

(3) Using the properties of continuous functions (you do not have to do an ǫ-δ
proof), prove that the function defined by

f(x, y) =

{

(x2 + 1) sin(x
2+y2)

x2+y2 (x, y) 6= (0, 0)

1 (x, y) = (0, 0)

is continuous at the origin.
Solution. Let g(x, y) = x2 + 1, and let

h(r) =

{

sin(r)
r

r 6= 0

1 r = 0
.

Then f(x, y) = g(x, y)h(x2 + y2). We know from Calculus 1 that h(r) is a
continuous function at r = 0 (note that it is a function of a single variable!).
Then h(x2 + y2) is continuous as composition of continuous functions. The
function g(x, y) = x2 + 1 is continuous as well (x is a continuous function
of (x, y); the product of continuous functions is continuous; the sum of a
continuous function x2 and the constant function 1 is continuous). Then,
f(x, y) is continuous as a product of two continuous functions.

(4) (The ”claim” from class on October 7):
Suppose lim(x,y)→(0,0) f(x, y) = L exists. Let g(x) be any continuous func-
tion, such that limx→0 g(x) = 0. Prove that then the limit of f(x, y) along
the curve y = g(x) (as x approaches 0) exists and equals L. In other words,
prove that

lim
x→0

f(x, g(x)) = L.

Hint: the proof is very similar to (and simpler than) the proof of continuity
of the composite function that we did in class on October 9.

Solution. We need to show that given ǫ > 0, there exists δ such that if
|x| < δ, then |f(x, g(x)) − L| < ǫ.

To find such δ, we ‘unwind’ the expression f(x, g(x)). We are given that
f(x, y) is a continuous function at the origin. This means, in particular, that

for our given ǫ, there exists a value δf > 0, such that when
√

x2 + y2 < δf ,
we have |f(x, y)−L| < ǫ. Let us compare this with what we want to prove:
we want our δ to be such that when |x| < δ, then |f(x, g(x)) − L| < ǫ.
This means, if we could only find a δ such that when |x| < δ, then the

point (x, g(x)) satisfies the condition
√

x2 + g(x)2 < δf , then we would be
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done! Now we use the continuity of the function g(x) at the origin. Let

the value δf/
√
2 play the role of “ǫ”. Since g(x) is a continuous function

with g(0) = 0, we get that there exists δg such that when |x| < δg, then

|g(x)| < δf/
√
2. Finally, take

δ = min

(

δf√
2
, δg

)

.

Let us prove that this δ “works”. We need to prove: if |x| < δ, then
|f(x, g(x)) − L| < ǫ. Suppose |x| < δ. By definition of δg, we have that

|g(x)| < δf/
√
2. We also have that |x| < δ ≤ δf/

√
2. Then

x2 + g(x)2 < δ2f/2 + δ2f/2 = δ2f .

Then by definition of δf , we have that |f(x, g(x)) − L| < ǫ, and the proof
is completed.

(5) (Bonus question): Let f(x, y) be a continuous function, and let r be a real
number. Prove that the set

S = {(x, y) | f(x, y) < r}
is open.

Hint: Use the definition of an open set, and then the definition of a
continuous function.

Solution. The solution is similar to the previous one. Let (a, b) ∈ S.
We need to show that (a, b) is an interior point of S, which by definition
means that there exists δ > 0 such that the whole disc of radius δ centred
at (a, b) is contained in S. By the definition of the set S, this means we

need to find such δ that for any (x, y) satisfying
√

(x− a)2 + (y − b)2 < δ,
we have f(x, y) < r.

Since (a, b) ∈ S, we know that f(a, b) < r. Let ǫ = r−f(a,b)
2 ; then it is

a positive number. Since f(x, y) is a continuos function, we know that for

this value of ǫ, there exists δ > 0 such that when
√

(x− a)2 + (y − b)2 < δ,

we have |f(x, y)− f(a, b)| < ǫ = r−f(a,b)
2 . But this implies that f(x, y) < r,

and therefore (x, y) ∈ S, and the proof is completed.


