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Chapter 1

Curves in the plane and in
space

§1.1 What is a curve?
Definition 1.1.1: Parametrized curve

A parametrized curve in Rn is a map γ : (α, β)→ Rn, for some (α, β) ⊆ R

Example : γ(t) : (−∞,∞)→ (t, t2)

Note There can be different parametrizations for the same curve; but it’s not manda-
tory that they have same properties.

Smooth Function A function f : (α, β) → R is said to be smooth if the derivative
dnf
dtn exists for all n ≥ 1 and all t ∈ (α, β).

Definition 1.1.2: Tangent Vector

If γ is a parametrized curve, its first derivative γ̇(t) is called the tangent vector of
γ at the point γ(t).

Proposition 1.1.1

If the tangent vector of a parametrized curve is constant, the image of the curve
is (part of) a straight line.

§1.2 Arc-Length
Recall that if v = (v1, v2, . . . vn) ∈ Rn, then it’s length is:

‖v‖ =
√
v2

1 + v2
2 + · · · v2

n

If u is another vector in Rn , ‖u− v‖ is the length of the straight line segment joining
the points u and v in Rn.

Definition 1.2.1: Arc-length

The arc-length of a curve γ starting at the point γ(t0) is the function s(t) given
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1.3. REPARAMETRIZATION OF A CURVE 3

by:

s(t) =
∫ t

t0

‖γ̇(x)‖ dx

Note that if we choose a different starting point, then the new arc-length differs
from the previous one (but how much?)

Definition 1.2.2

If γ : (α, β) → R2 is a parametrized curve, it’s speed at point γ(t) is ‖γ̇(t)‖, and
γ is said to be a unit-speed curve if γ̇(t) is a unit-vector ∀t ∈ (α, β).

Proposition 1.2.1

Let n(t) be a unit vector that is a smooth function of a parameter t. Then, the
dot product

n(t) · ṅ(t) = 0 ∀t

so, either ṅ(t) is zero or perpendicular to n(t)

§1.3 Reparametrization of a curve
Definition 1.3.1: Reparametrization

A parametrized curve γ̃ : (α̃, β̃) → Rn is a reparametrization of a parametrized
curve γ : (α, β) → Rn if ∃ a smooth bijective map φ : (α̃, β̃) → (α, β) (the
reparametrization map) such that the inverse map φ−1 : (α, β) → (α̃, β̃) is also
smooth and

γ̃(t̃) = γ(φ(t̃))

Definition 1.3.2: Regular Curve

A point γ(t) of a parametrized curve γ is called a regular point if γ̇(t) 6= 0 otherwise
γ(t) is a singular point of γ. A curve is regular if all of its points are regular

Proposition 1.3.1

Any reparametrization of a regular curve is regular.

Proposition 1.3.2

If γ(t) is a regular curve, its arc-length s, starting at any point of γ, is smooth
function of t.
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Theorem 1.3.1: Unit-speed reparametrization

A parametrized curve has a unit-speed reparametrization if and only if it is regular.

Corollary 1.3.1

Let γ be a regular curve and let γ̃ be a unit-speed reparametrization of γ:

γ̃(u(t)) = γ(t) ∀t

where u is a smooth function of t. Then, if s is the arc-length of γ (starting at any
point), we have:

u = ±s+ c for some c ∈ R (1.1)

Conversely, if u is given by Eq. 1.1 for some value of c and with either sign, then
γ̃ is a unit-speed reparametrization of γ.

§1.4 Closed Curves
Definition 1.4.1: Periodic Curve

Let γ : R→ Rn be a smooth curve and let T ∈ R. We say that γ is T -periodic if:

γ(t+ T ) = γ(t) ∀t ∈ R

If γ is not constant and is T -periodic for some T 6= 0, then γ is said to be closed.
Note if γ is T -periodic the it is −T -periodic too because

γ(t− T ) = γ(t− T + T ) = γ(t)

It follows that if γ is T -periodic for some T 6= 0, then it is T -periodic for some
(T > 0).

Definition 1.4.2: Self-intersection

A curve γ is said to have a self-intersection at a point p of the curve if there exist
parameter values a 6= b such that

• γ(a) = γ(b) = p

• if γ is closed with period T , then a− b is not an integer multiple of T .

Proof. Assume there exists no lower bond for the period of curve. Then if T1 is the
period of γ then ∃ T2 such that T2 is also the period of the curve and by iteration we
can show:

T1 > T2 > T3 . . . > 0

is a sequence of the periods for curve γ
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Since, the sequence is bounded and monotonic, therefore lim
r→∞

Tr = T i.e the sequence
is convergent =⇒ the sequence is cauchy.

And by definition of cauchy sequence:

∀ε > 0 ∃N : ∀m,n > N =⇒ |Tm − Tn| < ε

Let, Tm > Tn (won’t change the definition).Also, we know that if Tm & Tn are
periods of γ =⇒ Tm − Tn =⇒ Tm = Tn + ε is also the period of gamma (trivial to
prove!).

γ(t+ Tn + ε) = γ(t)
γ(t+ ε) = γ(t)

Since, it’s true ∀ε > 0 =⇒ γ is constant. Hence, a contradiction (γ is non-
constant.). So, our assumption was false. �



Chapter 2

Curvature

§2.1 What is curvature?
Definition 2.1.1: Curvature

If γ is a unit-speed curve with parameter t, its curvature κ(t) at the point γ(t) is
defined to be ‖γ̈(t)‖.

Note we have defined curvature for a unit-speed parametric ony.

Theorem 2.1.1

The curvature for any regular curve γ is given as

κ = ‖(γ̇ · γ̇)γ̈ − (γ̇ · γ̈)γ̇‖
‖γ̇‖4

Proposition 2.1.1

Let γ(t) be a regular curve in R3. Then its curvature is

κ = ‖γ̈ × γ̇‖
‖γ̇‖3

where × is our usual vector cross product.

Problem 1. Show that, if the curvature κ(t) of a regular curve γ(t) is > 0 every- where,
then κ(t) is a smooth function of t. Give an example to show that this may not be the
case without the assumption that κ(t > 0).

§2.2 2D and 3D curves
§2.2.1 Plane curve
Let γ be a unit-speed curve in a plane. And let the tangent vector be

t = γ̇
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2.2. 2D AND 3D CURVES 7

Note, t is a unit-vector. There are two vectors perpendicular to t; we make a choice by
defining ns, the signed unit normal of γ, to be the unit vector obtained by rotating t
anti-clockwise by π/2

So, by Proposition 1.2.1, ṫ = γ̈ is perpendicular to t, and hence parallel to ns. Thus,
there is a scalar κs such that

γ̈ = κsns
κs is called the signed curvature of γ. And since ‖ns‖ = 1, we have

κ = ‖κsns‖ = |κs|

Note, we have defined the signed curvature for unit-speed curve. If γ is any reg-
ular curve , the we define the above defined parameters to be those of it’s unit speed
parametrization.

Intuitively, since γ(t) is assumed to be a unit-speed curve on a plane, then γ̇(t) can
be measured by angle φ(s) such that:

γ̇(s) = (cosφ(s), sinφ(s)) (2)

Also, we can think curvature as rate at which the angle of tangent vector is changing,
so if we find the derivative of the above curve then it simply represents a changing angle
parameter.

Proposition 2.2.1

Let γ : (α, β)→ R2 be a unit speed curve, let s0 ∈ (α, β) and let φ0 be such that

γ̇(s0) = (cosφ0, sinφ0)

Then ∃! smooth function: φ : (α, β) → R such that φ(s0) = φ0 and that Eq. (2)
holds for all s ∈ (α, β)

Definition 2.2.1: Turning Angle

The smooth function φ in Proposition 2.2.1 is called the turning angle of γ deter-
mined by the condition φ(s0) = φ0 .

Proposition 2.2.2

Let γ(s) be a unit-speed plane curve, and let φ(s) be a turning angle for γ. Then,

κs = dφ

ds

Thus, the signed curvature is the rate at which the tangent vector of the
curve rotates.

Corollary 2.2.1

The total signed curvature of a closed plane curve is an integer multiple of 2π
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The next result shows that a unit-speed plane curve is essentially determined once
we know its signed curvature at each point of the curve. The meaning of ‘essentially’
here is ‘up to a direct isometry of R2 ’, i.e., a map M : R2 → R2 of the form

M = Ta ◦ ρθ
where ρθ is an anti-clockwise rotation by angle θ about the origin,

ρθ = (x cos θ − y sin θ, x sin θ + y cos θ)

and Ta is a translation by vector a

Ta(v) = v + a

for any vector (x, y) and v in R2

Theorem 2.2.1

Let k : (α, β) → R be any smooth function. Then, there is a unit-speed curve
γ : (α, β)→ R2 whose signed curvature is k.

Further, if γ̃ : (α, β)→ R2 is any other unit-speed curve whose signed curvature
is k, there is a direct isometry M of R2 such that

γ̃(s) = M(γ(s)) ∀s ∈ (α, β)

§2.2.2 Space curve
Definition 2.2.2

Let γ(s) be a unit-speed curve in R3 , and let t = γ̇ be its unit tangent vector. If
the curvature κs is non-zero, we define the principal normal of γ at the point γ(s)
to be the vector

n(s) = 1
κ(s) ṫ(s)

Further, since ‖ṫ‖ = κ, so n is a unit-vector. Therefore by Proposition 1.2.1, so t
and n are perpendicular.So

b = t× n

is a unit-vector perpendicular to both t and n. The vector b(s) is called the
binormal vector of γ at point γ(s). Thus, {t,n,b} is an orthonormal basis of R3

, and is right-handed.

Definition 2.2.3

From Definition 2.2.2 we have
b = t× n

Differentiating both sides gives

ḃ = ṫ× n + t× ṅ = t× ṅ ((3))

Equation (3) shows that ḃ is perpendicular to t. Being perpendicular to both t
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and b, ḃ must be parallel to n, so

ḃ = −τ × n

for some scalar τ , which is called the torsion of γ.
Note that the torsion is only defined if the curvature is non-zero.

Definition 2.2.4

Let γ(t) be a regular curve in R3 with nowhere-vanishing curvature. Then, denot-
ing d

dt by a dot, its torsion is given by

τ = (γ̇ × γ̈) · ...
γ

‖γ̇ × γ̈‖2

Proposition 2.2.3

Let γ be a regular curve in R with nowhere vanishing curvature (so that the torsion
τ of γ is defined). Then, the image of γ is contained in a plane if and only if τ is
zero at every point of the curve.

Theorem 2.2.2

Let γ be a unit-speed curve in R with nowhere vainshing curvature. Then,

ṫ = κn
ṅ = −κt + τb

ḃ = τn

The above equation is called as Frenet-Serret equations. Notice that the matrix 0 κ 0
−κ 0 τ
0 −τ 0


which is the matrix of linear transformation is a skew-symmetric.

Proposition 2.2.4

Let γ be a unit-speed curve in R3 with constant curvature and zero torsion. Then,
γ is a parametrization of (part of) a circle.

Theorem 2.2.3

Let γ(s) and γ̃(s) be two unit-speed curves in R3 with the same curvature κ(s) > 0
and the same torsion τ(s) for all s. Then, there is a direct isometry M of R3 such
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that
γ̃(s) = M(γ(s)) ∀s

Further, if k and t are smooth functions with k > 0 everywhere, there is a unit-
speed curve in R3 whose curvature is k and whose torsion is t.



Chapter 3

Global properties of curves

§3.1 Simple closed curves
Definition 3.1.1

A simple closed curve in R2 is a closed curve in R2 that has no self-intersections.

Theorem 3.1.1: Jordan Curve Theorem

The complement of the image of γ (i.e., the set of points of R2 that are not in
the image of γ) is the disjoint union of two subsets of R2, denoted by int(γ) and
ext(γ), with the following properties:

• int(γ) is bounded, i.e. it is contained in the circle of sufficiently large radius.

• ext(γ) is unbounded.

• Both the regions int(γ) and ext(γ) are connected, i.e they have the property
that any two points in the same region can be joined by a curve contained
entirely in the region.

Theorem 3.1.2: Hopf’s Umlaufsatz

The total signed curvature of a simple closed curve in R2 is ±2π.

§3.2 The isoperimetric inequality
Definition 3.2.1: Area of a curve

The area contained by a simple closed curve γ is

A(γ) =
∫

int(γ)
dxdy

Theorem 3.2.1: Green’s Theorem

Let f(x, y) and g(x, y) be smooth functions (i.e., functions with continuous partial
derivatives of all orders), and let γ be a positively- oriented simple closed curve.

11
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Then, ∫
int(γ)

(
∂g

∂x
− ∂f

∂y

)
dxdy =

∫
γ

f(x, y)dx+ g(x, y)dy

Proposition 3.2.1

If γ(t) = (x(t), y(t)) is a positively-oriented simple closed curve in R2 with period
T , then

A(γ) = 1
2

∫ T

0
(xẏ − yẋ)dt

Theorem 3.2.2: Isoperimetric Inequality

Let γ be a simple closed curve, let l(γ) be its length and let A(γ) be the area
contained by it. Then,

A(γ) ≤ 1
4π l(γ)2

and equality holds if and only if γ is a circle.

§3.3 The four vertex Theorem
Definition 3.3.1: Vertex

A vertex of a curve γ(t) in R2 is a point where its signed curvature κs has a
stationary point, i.e., where dκs

dt = 0.

Theorem 3.3.1: Four Vertex Theorem

Every convex simple closed curve in R2 has at least four vertices.



Chapter 4

3D Surfaces

§4.1 What is a surface?
As in the case of curves, we make two definitions of the concept of surface. One of

them (regular surface) emphasizes the fact that a surface, as we think of it, is a set of
points. The other (parametrised surface) emphasizes the parametrization of the surface.
While these two concepts were similar in the case of curves (every regular curve can be
covered with a single parametrization, so it is a parametrised regular curve), they are
different for surfaces: a sphere, for example, is a regular surface, but not a parametrised
regular surface. We will further show that we need two parametric maps to describe
the whole surface of a sphere and to keep it consistent with the other properties such as
tangents amd normals etc.

Definition 4.1.1: Surface

A subset S of R3 is a surface if, for every point p ∈ S, there is an open set U ⊆ R2

and an open set W ⊆ R3 containing p such that S ∩W is homeomorphic to U i.e.

σ : U ⊂ R2 → S ∩W

such that ∃ (u, v) ∈ U : σ(u, v) = p.

1 A subset of S of the form S ∩W , where W is an open subset of R3 , is called an open
subset of S.

2 A continuous bijective function between two topological space (i.e. shapes here) is
termed as homeomorphism

Definition 4.1.2: Surface Patch

A homeomorphism σ : U → S ∩W as in previous definition is called a surface
patch or parametrization of the open subset S ∩W of S.

A surface is some subset of R3 that can be covered by surface patches. Each surface
patch looks like a (maybe deformed) piece of R2.

§4.2 Smooth Surfaces
Smooth Functions If U is an open subset of Rm , we say that a map f : U → Rn

is smooth if each of the n components of f , which are functions U → R, have
continuous partial derivatives of all orders.

13
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Definition 4.2.1: Regular Surface Patch

A surface patch σ : U → R3 is called regular if it is smooth and the vectors σu
and σv are linearly independent at all points (u, v) ∈ R2. Equivalently, σ should
be smooth and the vector product σs×σv should be non-zero at every point of U
.

Definition 4.2.2: Allowable Patch

If S is a surface, an allowable surface patch for S is a regular surface patch σ :
U → R3 such that σ is a homeomorphism from U to an open subset of S.

Definition 4.2.3: Smooth Surface

A smooth surface is a surface S such that, for any point p ∈ S there is an allowable
surface patch σ as above such that p ∈ σ(U).

Definition 4.2.4: Atlas

A collection A of allowable surface patches for a surface S such that every point
of S is in the image of at least one patch in A is called an atlas for the smooth
surface A.

Proposition 4.2.1

The transition maps of a smooth surface are smooth.

Proposition 4.2.2

Let U and Ũ be open subsets of R2 and let σ : U → R3 be a regular surface patch.
Let Φ : Ũ → U be a bijective smooth map with smooth inverse map Φ−1 : U → Ũ .
Then, σ̃ = σ ◦ Φ : Ũ → R3 is a regular surface patch.

§4.3 Smooth Map
In this section, will define the notion of smooth map f : S1 → S2, where S1 and S2 are
smooth surfaces.

Definition 4.3.1: Diffeomorphisms

Smooth maps f : S1 → S2, which are bijective and whose inverse map f−1 : S2 →
S2 is smooth are called diffeomorphisms.
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Proposition 4.3.1

Let f : S1 → S2 be a diffeomorphisms. If σ1 is a allowable surface patch on S1,
then f ◦ σ1 is an allowable surface patch on S2.

§4.4 Tangents and derivatives
Definition 4.4.1: Tangent

A tangent vector to a surface S at a point p ∈ S is the tangent vector at p of a
curve in S passing through p. The tangent space TpS of S at p is the set of all
tangent vectors to S at p.

Proposition 4.4.1

Let σ : U → R3 be a patch of a surface S containing a point p ∈ S, let (u, v) be
coordinates in U . The tangent space to S at p is a vector subspace or R3 spanned
by vector σu and σv ((the derivatives are evaluated at the point (u0, v0) ∈ U such
that σ(u0, v0) = p)

Since, by above proposition we can see that the tangent space is 2D and will be called
tangent plane form now on.

Remember This text only contains important theorems and definitions from the text-
book Elementary Differential Geometry. And some of the problems for the
book are also discussed (non-trivial problems).
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