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Chapter 1

The set of R and some of it’s
properties

§1.1 The set of R

Definition 1.1.1: Completeness Axiom

Every nonempty subset S of R that is bounded above has a least upper bound.
In other words, sup S exists and is a real number

Corollary 1.1.1

Every nonempty subset S of R that is bounded below has a greatest lower
bound. In other words, inf S exists and is a real number.

Proof. Let S be a set which is bounded below i.e. ∀s ∈ S , s ≥ m for some m ∈ R
.Take the set −S = {−s | s ∈ S} . Therefor ∀u ∈ −S ⇒ {u ≤ −m} or

⇒ u ≤ sup(−S) ≤ −m {completeness axiom}

⇒ −s ≤ sup(−S) ≤ −m

⇒ m ≤ −sup(−S) ≤ s

Let ∃ λ ∈ R such that −sup(−S) ≤ λ ≤ s which implies −s ≤ −λ ≤ sup(−S).
Since, −λ cannot be the supremum of S.

Therefore, inf(S) = -sup(-S) .

�

Theorem 1.1.1: Archemedian Property

If a ≥ 0 and b ≥ 0, then ∃ n ∈ N such that na ≥ b . Or in other words we
can say that the set of natural numbers is not bounded above.

Proof. Assume the Archimedean property fails. Then there exist a ≥ 0 and b
≥ 0 such that na ≤ b ∀ n ∈ N. In particular, b is an upper bound for the set
S = {na | n ∈ N}. Let s0 = supS; this is where we are using the completeness

2



CHAPTER 1. THE SET OF R AND SOME OF IT’S PROPERTIES 3

axiom. Since a ≥ 0, we have s0 ≤ s0 + a, so s0-a ≤ s0. Since s0 is the least upper
bound for S, s0 − a cannot be an upper bound for S. It follows that s0 − a ≤ n0a
for some n0 ∈ N This implies s0 ≤ (n0 + 1)a. Since (n0 + 1)a is in S, s0 is not an
upper bound for S and we have reached a contradiction. Our assumption that the
Archimedean property fails was wrong. �



Chapter 2

Sequences

§2.1 Convergence

Definition 2.1.1: Convergence

A sequence {sn} is said to converge to a real number “s” provided that
for each ε > 0 there exist as number N such that

n > N implies |sn − s| < ε (2.1)

If (sn) converges to s, we will write lim
n→∞

sn = s , or sn → s. The number

s is called the limit of the sequence (sn) . A sequence that does not converge
to some real number is said to diverge (Is it?)

Problem 1. Let (sn) be a sequence of nonnegative real numbers and suppose s =
lim sn. Note s ≥ 0 . Prove lim 2

√
sn = 2

√
s

Solution. Case 1:(s > 0) Let ε > 0. Since lim sn = s ⇒ ∃ N such that

n > N implies |sn − s| < ε (2.2)

Now, n > N implies

|
√
sn −

√
s| = |sn − s|√

sn +
√
s
≤ |sn − s|√

s
<

√
sε√
s

= ε

Case 2:(s = 0) Since sn > 0 ⇒ |sn − 0| < ε ∀ ε > 0 . Take ε to be ε2 .

⇒ n > N implies |sn| < ε2 ⇒ |
√
sn| < ε

⇒ |
√
sn − 0| < ε

So, lim
√
sn = 0 �

Problem 2. Prove that:

1. lim[
√
n2 + 1− n] = 0

4



CHAPTER 2. SEQUENCES 5

2. lim[
√

4n2 + n− 2n] = 1/4

Solution. I think it’s enough to discuss the strategy because the reader should
be able to proceed backwards.

1. Since,
√
n2 + 1 − n > 0 we can simply remove the modulus sign and write√

n2 + 1− n < ε
⇒ n2 + 1 < (ε+ n)2

⇒ n2 + 1 < ε2 + n2 + 2nε

⇒ 1− ε2

2ε
< n

So, take your N = 1−ε2
2ε and proceed backwards

2. We can show that 1
4 >
√

4n2 + n− 2n by simply assuming the inequality and
we’ll get the result that 1/4 > 0 which is indeed true or if we assume other
inequality it’ll lead to the contradiction.

Since, 1
4 − (

√
4n2 + n− 2n) > 0 we can write

⇒ 1

4
− (
√

4n2 + n− 2n) < ε

⇒ 1

4
− ε+ 2n <

√
4n2 + n

To square both the sides 1
4 − ε+ 2n > 0, ∀n ∈ N which is if ε < 9/4. Squaring

both sides and cancelling the similar terms we get

⇒ (ε− 1/4)2 < n(1− 4(ε− 1/4)2)

Divide both side by (1− 4(ε− 1/4)2) for that 1− 4(ε− 1/4)2 > 0 or ε < 3/4
which also satisfies the above condition of ε < 9/4. Since,we have to prove
it for small enough ε. So, for bigger epsilon it’s automatically true i.e. if we
prove for ε < 3/4 then it is true for ε > 9/4. So,

⇒ (ε− 1/4)2

(1− 4(ε− 1/4)2)
< n

Hence, to write a formal proof take your N = (ε−1/4)2
(1−4(ε−1/4)2)

�

§2.2 Limit Theorem for Sequences

Definition 2.2.1

A sequence (sn) is said to be bounded if there exist a real number M, such
that |sn| ≤M , ∀n ∈ N

Geometrically, this means that we can find an interval [−M,M ] that con-
tains every term in the sequence (xn).
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Theorem 2.2.1

Convergent sequences are bounded

Proof. Let (sn) be a convergent sequence of real numbers, let lim sn = s. Apply-
ing 2.1.1 with ε = 1 we obtain N in N such that

⇒ n > N implies |sn − s| < 1

From triangular inequality it implies |sn| < |s|+1 for n > N . Take M =max{|s1|, |s2|, |s3|, . . . |s|+
1} .Then we have |sn| ≤M for all n ∈ N , so (sn) is bounded.

The choice of ε is arbitrary �

Theorem 2.2.2

If the sequence (sn) converges to s and k is in R, then the sequence (ksn)
converges to (ks). That is, lim(ksn) = k · lim sn.

Theorem 2.2.3

If sn converges to s and tn converges to t, then (sn + tn) converges to (s+ t)

lim(sn + tn) = (s+ t)

Theorem 2.2.4

If sn converges to s and tn converges to t, then (sn · tn) converges to (s · t)

lim(sn · tn) = (s · t)

The theorem can be proved using the identity (a + b)2 = a2 + b2 + 2ab
take (sn + tn) and (sn − tn) and proceed. (Wait did I prove lim(an)2 = a2 if
an → a. Well, if not then it’s easy to prove.)

Theorem 2.2.5

If sn converges to s. Then 1/sn converges to 1/s for (s 6= 0)

Proof. We begin by observing that∣∣∣∣ 1

sn
− 1

s

∣∣∣∣ =
|sn − s|
|sns|

Because (sn) → s, we can make the preceding numerator as small as we like by
choosing n large. The problem comes in that we need a worst-case estimate on
the size of 1/(|s||sn|). Because the sn terms are in the denominator, we are no
longer interested in an upper bound on |sn| but rather in an inequality of the form
|sn| ≥ δ > 0. This will then lead to a bound on the size of 1/(|s||sn|). The trick is
to look far enough out into the sequence (sn) so that the terms are closer to s than
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they are to 0. Consider the particular value ε = |s|/2. Because (sn) → s, there
exists an N1 such that |sn − s| < |s|/2 for all n ≥ N1. This implies |sn| > |s|/2.
Next, choose N2 so that n ≥ N2 implies |sn − s| < |s|

|sn − s| <
ε · s2

2

Finally, if we let N = max{N1, N2}, then n ≥ N implies.∣∣∣∣ 1

sn
− 1

s

∣∣∣∣ = |sn − s|
1

|sns|
<
εs2

2

1

|s| |s|2
= ε

�

Theorem 2.2.6

If sn converges to s and tn converges to t (t 6= 0), then sn
tn

converges to ( st )

lim
sn
tn

=
s

t

Proof. The proof is trivial and is left as an exercise for the readers �

Theorem 2.2.7

If sn < tn then lim sn ≤ lim tn.

Proof. Let s = lim sn and t = lim tn. Let hn = tn − sn > 0 . So, h = limhn ≥ 0
(Why?). Let’s take h < 0⇒ −h > 0. So, there exists a N such that n > N implies
|hn − h| < −h⇒ hn < 0. Contradiction! So, h ≥ 0⇒ t− s ≥ 0. �

Theorem 2.2.8: (Basic Examples)

a. limn→∞
1
np = 0 for p > 0.

b. limn→∞ an = 0 if |a| < 1.

c. limn→∞ n
1
n = 1.

d. limn→∞ a
1
n = 1, a > 0.

Problem 3. For a sequence (sn) of positive real numbers, we have lim sn = +∞ if
and only if lim( 1

sn
) = 0.

Proof. We need to prove that

lim sn = +∞ ⇒ lim(1/sn) = 0

and
lim(1/sn) = 0 ⇒ lim sn = +∞
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1. Since lim sn = +∞ so for every n > N there exist a M such that sn > M .
Take M = 1/ε, ε > 0

⇒ sn > M = 1/ε

⇒ ε >
1

sn
> 0

⇒
∣∣∣∣ 1

sn
− 0

∣∣∣∣ < ε

2. Workout the above proof backwards by assuming ε = 1/M

�

Problem 4. Let s1 = 1 and sn+1 =
√

1 + sn .
Assume that the sequence converge. Prove that the sequence converges to 1

2 (1 +
√

5)

Proof. Let the sequence converge to s.So, as n→∞ sn+1 = sn = s therefore In this
problem
we have as-
sumed that
the limit
exist

⇒ sn+1 =
√

1 + sn

⇒ s2n+1 − sn − 1 = 0

⇒ s2 − s− 1 = 0 as n→∞
So, s = 1

2 (1 +
√

5) �

Theorem 2.2.9

Let {an} be a sequence of positive numbers such that lim
n→∞

an = L. Prove

that lim
n→∞

n
√

(a1a2 · · · an) = L

Theorem 2.2.10

If lim
∣∣∣an+1

an

∣∣∣ exists [and equals L], then lim(an)
1
n exists [ and equals L ].

Also, deduce limn→∞
n

(n!)
1
n

Proof. Define the sequence {bn} by b1 = a1 and bn = an
an−1

for n ≥ 2. Since

limn→∞
an
an−1

= L , we have limn→∞ bn = L. Note that an = (b1b2 . . . bn). Applying

the above Theorem to the sequence bn, we get :

lim
n→∞

(an)
1
n = lim

n→∞
(b1b2 . . . bn)

1
n = L

Now, let an = nn

n! . Note that

lim
n→∞

an + 1

an
= lim
n→∞

(n+1)(n+1)

(n+1)!
nn

n!

= lim
n→∞

(n+1)(n+1)

(n+1)

nn
= lim
n→∞

(
n+ 1

n

)n
= lim
n→∞

(
1 +

1

n

)n
= e

By the conclusion above, we have:

lim
n→∞

nn

(n!)
1
n

= lim
n→∞

a
1
n
n = e

�
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§2.3 Monotone and Cauchy Sequences

Theorem 2.3.1

All bounded monotone sequences are convergent

Proof. I’ll prove it for monotonically decreasing sequences
Let (sn) be a bounded decreasing sequence i.e. ∀ n ∈ N [sn+1 < sn] & [ |sn| <
M ] for some M ∈ R.

Since, |sn| < M ⇒ −M < sn < M . Applying Corollary 1.1.1 there exist a
λ ∈ R such that −M < λ < sn for all n ∈ R. Since, λ is the greatest lower-bound,
therefore for any ε > 0 there exist a N such that sN < λ+ ε. Also, the sequence is
deceasing so λ− ε < λ ≤ sn+1 ≤ sn ≤ λ < λ+ ε

⇒ −ε < sn + λ < ε

⇒ |sn − λ| < ε

So, inf(sn)=lim sn in case of decreasing sequences
�

Definition 2.3.1: lim sup′ s & lim inf ′ s

For some sequence sn we define:

lim sup sn = lim
N→∞

sup{sn : n > N}

and
lim inf sn = lim

N→∞
inf{sn : n > N}

Problem 5. Calculate the lim sup an and lim inf an for an = (−1)n (n+5)
n

Figure 2.1: (−1)n (n+5)
n v/s n
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Solution. Since in the set of subsequences of an the least element will be the
lim inf and the greatest term would be lim sup so. Since the -ve values are less
than the +ve ones and in case of −1 − 5

n the least value for n gives the least of
all so,we can say the first negative term of each subsequence will be the element
of subsequential infimimum.Therefore, lim(−1 − 5

n ) = −1 is the lim inf. Similar
argument for lim sup as the greatest of all will be sup of each subsequence and the

least value of n will give the largest of all. So, the sequence sn = (n+5)
n will be

sequence of subsequential supremum.And lim (n+5)
n = 1. �

Theorem 2.3.2

Let (sn) be a sequence R

(i) If lim sn is defined then:

lim inf sn = lim sup sn = lim sn

(ii) If lim inf sn = lim sup sn then lim sn is defined and lim inf sn = lim sup sn =
lim sn

Definition 2.3.2: CAUCHY SEQUENCE

[5] A sequence (sn) of real numbers is said to be Cauchy if:
for each ε > 0 there exist a N such :

∀ n,m > N implies |sn − sm| < ε

(a) The plot of a Cauchy sequence (xn), shown in
blue, as (xn) versus n

(b) A sequence that is not Cauchy.But is bounded

Figure 2.2: Illustartion for cauchy sequences

Lemma 2.3.1

Convergent sequence are Cauchy

Lemma 2.3.2



CHAPTER 2. SEQUENCES 11

Cauchy sequence are bounded

Theorem 2.3.3

A sequence is a convergent sequence if and only if it is a Cauchy sequence.

Problem 6. Prove that |sn+1 − sn| < 2−n is cauchy. And hence convergent.

Proof. We’ve to prove that ∀ε > 0 there exist a N such that ∀ n,m > N ,
|sm − sn| < ε.

Take m > n and let m = n+ k. So, by triangular inequality

|sm − sn| ≤|sm − sm−1|+|sm−1 + sm−2|+ . . .+|sn+1 + sn| <
1

2n
+

1

2n+1
+ . . .+

1

2m

Since, m = n+k and if we add more +ve terms then we will get a G.P. with ratio
1
2 which look like this:

1

2n
+

1

2n+1
+ . . .+

1

2m
=

1

2n
+

1

2n+1
+ . . .+

1

2n+k
=

1

2n−1
(1− 1

2k
)

So, We have
not talked
about Se-
ries / sum-
mation till
now. Se-
ries, will be
discussed
in the next
Section(3)

|sm − sn| ≤|sm − sm−1|+|sm−1 + sm−2|+ . . .+|sn+1 + sn| <
1

2n−1
(1− 1

2k
) <

1

2n−1

And applying Theorem 2.2.8 ,we can say 1
2n−1 is convergent. Hence, the same

N will work for the sequence sn. �

Problem 7. Let sn be an increasing sequence. Prove that σn = 1
n (s1+s2+ . . .+sn)

is an increasing sequence.

Proof. Since, since σ1 < σ2. Let us suppose σn > σn−1. Now, we have to prove
that it is true for the term σn+1.

Suppose, it’s not true i.e. σn+1 < σn

1

n+ 1
(s1 + s2 + . . .+ sn+1) <

1

n
(s1 + s2 + . . .+ sn)

If we further simplify the inequality, we get nsn+1 < (s1 + s2 + . . . + sn) which is
false. So, the assumption was false. Hence, σn+1 > σn. �

Problem 8. Define x1 = 2 and:

xn+1 =
1

2

(
xn +

2

xn

)
Prove that the lim

n→∞
xn =

√
2.
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Proof. Observer that x2 < x1 = 2. So, assume xn+1 < xn < xn−1 . . . < x1 = 2.
Suppose xn+2 > xn+1 (it would lead to a contradiction), it implies:

⇒ 1

2

(
xn+1 +

2

xn+1

)
> xn+1

⇒ (xn+1)2 < 2

Substitute xn+1 = 1
2

(
xn + 2

xn

)
and solve. We get:

(xn
2 − 2)2 < 0

which is a contradiction. So, the series is monotonically decreasing and bounded(because
each element is greater than zero and less that two). Hence, convergent. To prove
lim
n→∞

xn =
√

2, put xn+1 = xn = x in the definition.(∵ lim
n→∞

xn = lim
n→∞

xn+1 ) �

§2.4 Subsequences

An unformal definition of subsequence: A Subsequence is a sequence that
can be derived from another sequence by deleting some or no elements without
changing the order of the remaining elements

Theorem 2.4.1

If the sequence (sn) converges, then every subsequence converges to the same
limit.

Theorem 2.4.2

Every sequence (sn) has a monotonic subsequence.

Theorem 2.4.3: Bolzano-Weierstrass Theorem

[6] Every bounded sequence has a convergent subsequence.

Proof. It’s easy to prove that every bounded sequence has a convergent subse-
quence. Since, every sequence has a monotonic subsequence and since the sequence
is bounded implies subsequence is bounded. And every bounded monotonic se-
quence is convergent. �

§2.4.1 Subsequential Limits

Definition 2.4.1

Let (sn) be a sequence in R. A subsequential limit is any real number or
symbol +∞ or −∞ that is the limit of some subsequence of (sn).

When a sequence has a limit s, then all subsequences have limit s, so {s}
is the set of subsequential limits



CHAPTER 2. SEQUENCES 13

Figure 2.3: Bolzano-Weierstrass Theorem

Theorem 2.4.4

Let (sn) be any sequence. There exists a monotonic subsequence whose limit is
lim sup sn, and there exists a monotonic subsequence whose limit is lim inf sn.

Recall Let (sn) be any sequence of real numbers, and let S be the set of subse-
quential limits of (sn). Recall

lim inf sn = lim
N→∞

inf{sn : n > N} = inf S

and
lim sup sn = lim

N→∞
sup{sn : n > N} = supS



Chapter 3

Series

§3.1 Sum to infinity?

Definition 3.1.1: Summation Notation

∑m
n ak = an + an+1 + . . .+ am
2.To assign meaning to

∑∞
n=m an, we consider the sequences (sn)∞n=m of

partial sums:

sn = am + am+1 + . . .+ an =

n∑
k=m

ak

The infinite series
∑∞
n=m an an is said to converge provided the sequence (sn)

of partial sums converges to a real number S, in which case we define

∞∑
n=m

an = S

Definition 3.1.2: Cauchy Criterion for Series Convergence

We say a series
∑
an satisfies the Cauchy criterion if its sequence (sn) of

partial sums is a Cauchy sequence i.e.:
for each ε > 0 there exists a number N such that:

n ≥ m > N implies |sn − sm−1| < ε

And, sn − sm−1 =
∑m
n ak

A series converges iff it satisfies cauchy criterion

Corollary 3.1.1

If
∑
an converges then lim an = 0

§3.2 Convergence Tests for Series

§Comparison Test Let
∑
an be a series where an ≥ 0 for all n.

14
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1. If
∑
an converges and |bn| ≤ an for all n, then

∑
bn converges.

2. If
∑
an = +∞ and bn ≥ an for all n, then

∑
bn = +∞

Problem 9. Show that the series sn =
∑

1
n2 converges

Solution. Observation:

⇒ 1

n2
<

1

n(n− 1)
=

1

n− 1
− 1

n

⇒
n∑
2

1

n2
<

n∑
2

(
1

n− 1
− 1

n

)
Or

⇒ 1 +

n∑
2

1

n2
< 1 +

n∑
2

(
1

n− 1
− 1

n

)

⇒
n∑
2

1

n2
< 2− 1

n

As n→∞ we get:
∞∑
2

1

n2
< 2

Hence, it converges. �

§ Ratio Test: [7] A series
∑
an of nonzero terms.The usual form of the test

makes use of the limit:

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
(i) if L < 1 then the series converges absolutely;

(ii) if L > 1 then the series diverges;

(iii) if L = 1 or the limit fails to exist, then the test is inconclusive, because there
exist both convergent and divergent series that satisfy this case.

It is possible to make the ratio test applicable to certain cases where the limit L fails
to exist, if limit superior and limit inferior are used. The test criteria can also be
refined so that the test is sometimes conclusive even when L = 1. More specifically,
let

� R = lim sup
∣∣∣an+1

an

∣∣∣
� r = lim inf

∣∣∣an+1

an

∣∣∣
Then the ratio test states that:

� if R < 1, the series converges absolutely;

� if r > 1, the series diverges;

� if
∣∣∣an+1

an

∣∣∣ ≥ 1 for all large n (regardless of the value of r), the series also diverges;

this is because |an| is nonzero and increasing and hence an does not approach
zero;

� the test is otherwise inconclusive
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§ Root Test: [8] Let
∑
an be a series and let α = lim sup |an|1/n. The series∑

an

(i) converges absolutely if α < 1.

(ii) diverges if α > 1.

(iii) Otherwise α = 1 and the test gives no information

Note that if:
lim
n→∞

n
√
|an|

converges then it equals α and may be used in the root test instead.

Lemma 3.2.1

Let |sn| be a sequence of non-zero real numbers,
Then,

lim inf

∣∣∣∣sn+1

sn

∣∣∣∣ ≤ lim inf
∣∣∣|sn| 1n ∣∣∣ ≤ lim sup

∣∣∣|sn| 1n ∣∣∣ ≤ lim sup

∣∣∣∣sn+1

sn

∣∣∣∣

Problem 10. Prove that limn→∞
xn

n! = 0

Solution. a. Given:

⇒ an =
xn

n!

⇒ an+1 =
xn+1

n+ 1!

⇒ an+1

an
=

x

n+ 1

As n → ∞ ratio an+1

an
→ 0. Thus it converges1 . That means the series

∑
xn

n!

converges therefore xn

n! converges to zero.

b. The series ex =
∑∞
n=0

xn

n! converges. Hence xn

n! → 0.

c. MathStackexchange
�

Problem 11. Let lim sup |an| > 0. Then prove that lim sup |an|
1
n ≥ 1.

Proof. Assume that lim sup |an| > 0 but lim sup |an|
1
n < 1. We also conclude that

lim sup |an|
1
n < 1 implies

∑
an converges absolutely (by Root test).So, lim |an| =

lim sup |an| = 0. Contradiction!. So, lim sup |an|
1
n ≥ 1. �

https://math.stackexchange.com/q/712586
https://math.stackexchange.com/questions/712572/prove-that-xn-n-converges-to-0-for-all-x
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Theorem 3.2.1

Let
∑
|an| be a convergent series & let (bn) be a bounded sequence. Then,∑

anbn is also convergent.

Proof. By triangular inequality we can show that:∣∣∣∣∣∣
n∑

k=m

akbk

∣∣∣∣∣∣ ≤
n∑

k=m

|akbk|

Given, |bn| ≤M (it’s bounded), implies:

⇒|ak||bk| ≤|ak|M

⇒
∑
|ak||bk| ≤

∑
|ak|M

Since,
∑
an converges; therefore by cauchy criterion ∃ N ∈ N such that ∀ n ≥ m >

N :

⇒
n∑

k=m

|ak| <
ε

M

⇒
n∑

k=m

M |ak| < ε

Or

⇒

∣∣∣∣∣∣
n∑

k=m

akbk

∣∣∣∣∣∣ ≤
∑
|ak||bk| ≤

n∑
k=m

M |ak| < ε

Hence,
∑
anbn is convergent by comparison test. �

Corollary 3.2.1

Let an ≥ 0 &
∑
an converges. Then

∑
(ak)p converges ∀ p > 1

Proof. The above expression can be rewritten as:

n∑
k=m

|ak|p =

n∑
k=m

|ak||ak|p−1

Since,
∑
an converges, therefore an → 0. So, sequence an is convergent, hence

bounded.So, ap−1k is bounded.
∴ By previous theorem, we can say

∑
(ak)p converges. �

§3.3 Alternating Series Test

Theorem 3.3.1

If a1 ≥ a2 ≥ . . . ≥ an ≥ . . . ≥ 0 and lim an = 0, then the alternating series∑
(−1)n+1an converges. Moreover, the partial sums sn =

∑n
k=1(−1)k+1ak

satisfy |s− sn| ≤ an for all n.
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Proof. We need to show that the sequence (sn) converges. Note that the subse-
quence (s2n) is increasing because s2n+2 − s2n = −a2n+2 + a2n+1 ≥ 0. Similarly,
the subsequence (s2n−1) is decreasing since s2n+1 − s2n−1 = a2n+1 − a2n ≤ 0. We
claim:

s2m ≤ s2n+1 for all m,n ∈ N

First note that s2n ≤ s2n+1 for all n, because s2n+1 − s2n = a2n+1 ≥ 0. If m ≤ n,
then the above equation holds because s2m ≤ s2n ≤ s2n+1. If m ≥ n, then equation
holds because s2n+1 ≥ s2m+1 ≥ s2m. We see that (s2n) is an increasing subse-
quence of (sn) bounded above by each odd partial sum, and (s2n+1) is a decreasing
subsequence of (sn) bounded below by each even partial sum. By Theorem (2.3.1),
these subsequences converge, say to s and t. Now

t− s = lim
n→∞

s2n+1 − lim
n→∞

s2n = lim
n→∞

(s2n+1 − s2n) = lim
n→∞

a2n+1 = 0

. so s = t, follows that limn sn = s.
To check the last claim, note that s2k ≤ s ≤ s2k+1, so both s2k+1−s and s−s2k

are clearly bounded by s2k+1 − s2k = a2k+1 ≤ a2k. So, whether n is even or odd,
we have |s− sn| ≤ an. �

§3.4 Integral Test

Theorem 3.4.1

Consider an integer N and a non-negative function f defined on the unbounded
interval [N,∞), on which it is monotone decreasing. Then the infinite series:

∞∑
n

f(n)

converges to a real number if and only if the improper integral∫ ∞
N

f(x)dx

is finite. In other words, if the integral diverges, then the series diverges as
well.

Problem 12. Let (an)n∈N be a sequence such that lim inf |an| = 0. Prove there is
a subsequence (ank

)k∈N such that
∑∞
k=1(ank

) converges.

Proof. We first set n0 = 1 and c1 = 1. By the property of lim inf, there exists
n1 > n0 = 1 such that |an1

| < c1 = 1. Why does such an n1 exist? For sake of
contradiction, assume there is no n ∈ N such that |an| < 1, then 1 would be a lower
bound for {an : n ∈ N}. In which case, for all N, 1 would be a lower bound for {an :
n > N} so that 1 ≤ inf{an : n > N}, in which case 1 ≤ limN→∞ inf{an : n > N},
so we would get 1 ≤ 0. A contradiction.
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Then we set c2 = 1/4. Again, there exists n2 > n1 such that |an2 | < c2 = 1/4.
Why does such an n2 exist? (the same argument can be used here as above)

We can continue this fashion. At the k-th step, we set ck = 1/k2 and we can
then find some nk > nk−1 such that |ank

| < ck = 1/k2.
Note that

∞∑
k=1

|ank
| <

∞∑
k=1

1

k2
.

Since the RHS converges, the LHS converges, i.e.,
∑∞
k=1 ank

converges abso-
lutely. �

Problem 13. Prove if (an) is a decreasing sequence of real numbers and if
∑
an

converges, then limn · an = 0.

Proof. Since it’s given that
∑
an converges. Therefore by cauchy criteria ∀ε > 0

∃N ∈ N such that ∀n > m + 1 > N : (we’ll be using the fact that for n > m we
have an < am)

n∑
m+1

ak < ε

we didn’t
use a mod
because ob-
serve that
all terms
are positive

(n−m)an ≤ am+1 + am+2 · · ·+ an < ε

Hence, limn→∞(n−m)an = 0. Further, we see that :

lim
n→∞

nan = lim
n→∞

(n−m)an + lim
n→∞

man = 0

�

Problem 14. Show that
∑

1
np converges iff p > 1

Proof. 1. In particular, for p ≤ 1, we can write
∑

1
np = +∞. For p = 2 we

have already proved it in Problem 9.

For p > 2, we can prove it by the comparison test as :{
1

np
<

1

n2

}
, ∀ p > 0

Since, 1
n2 converges. Then 1

np converges by comparison test.

Or

The above proposition can be used to prove the result for p > 2

For 1 < p < 2

We have,
n∑
k=1

1

kp︸ ︷︷ ︸
sum of rectangles going

from 1 → n

≤ 1 +

∫ n

1

1

xp
dx︸ ︷︷ ︸

area under the curve
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2.

Figure 3.1: Geometric intution for
∑

1
np

⇒
n∑
k=1

1

kp
≤ 1 +

[
x1−p

1− p

]n
1

⇒
n∑
k=1

1

kp
≤ 1 +

[
n1−p

1− p
− 1

1− p

]

⇒
n∑
k=1

1

kp
≤

[
p− n1−p

p− 1

]

As n→∞ we get( ∵ 1− p < 0),

⇒
n∑
k=1

1

kp
≤
[

p

p− 1

]
�



Chapter 4

Continuity

§4.1 Continuity and Functions

Definition 4.1.1

A function f whose domain is defined over R is said to be continuous at a
point x0 ∈ dom(f) iff:

for each ε > 0 there exist a δ > 0 such that:

x ∈ dom(f) and |x− x0| < δ imply
∣∣f(x)− f(x0)

∣∣ < ε

.

Or

Let f be a real-valued function whose domain is a subset of R. The func-
tion f is continuous at (x0) ∈ dom(f) if, for every sequence (xn) ∈ dom(f)
converging to x0, we have limnf(xn) = f(x0) i.e.:

if for every sequence in domain if xn → x0 we have f(xn)→ f(x0)

Theorem 4.1.1

Let f be a real-valued function with dom(f) ⊆ R. If f is continuous at x0 in
dom(f), then |f | and kf , k ∈ R, are continuous at x0

§4.1.1 Properties of Continuous Functions

§ Bounded Function A real-valued function f is said to be bounded if {f(x) : x ∈
dom(f)} is a bounded set, i.e., if there exists a real number M such that |f(x)| ≤M
for all x ∈ dom(f).

Theorem 4.1.2

Let f be a continuous real-valued function on a closed interval [a, b]. Then f is
a bounded function. Moreover, f assumes its maximum and minimum values

21
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on [a, b]; that is, there exist x0, y0 ∈ [a, b] such that f(x0) ≤ f(x) ≤ f(y0)
for all x ∈ [a, b].

Theorem 4.1.3: Intermediate value theorem

If f is a continuous real-valued function on an interval I, then f has the
intermediate value property on I: Whenever a, b ∈ I, a < b and y lies between
f(a) and f(b) i.e. [f(a) < y < f(b) or f(b) < y < f(a)], there exists at least
one x ∈ (a, b) such that f(x) = y.

Figure 4.1: Intermediate value theorem

Problem 15. Prove that limx→a|x+ 2| = |a+ 2|

Proof. Simply take, δ = ε. We have |x− a| < δ.∣∣|x+ 2| −|a+ 2|
∣∣ ≤|x− a| < δ = ε (By triangular inequality)

�

Problem 16. Prove that limx→a(4 + x− 3x2) = (4 + a− 3a2)

Proof. We need to prove that∣∣∣4 + x− 3x2 − (4 + a− 3a2)
∣∣∣ =
∣∣(x− a)− 3(x− a)(x+ a)

∣∣ < ε

Or
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|x− a|
∣∣1− 3(x+ a)

∣∣ < ε

Since, we are trying to find a δ we can apply the triangular inequality on the above
expression and we get.

|x− a|
∣∣1− 3(x+ a)

∣∣ ≤ |x− a|(1 + 3|x+ a|) < ε

We need to find a upper bound for the above expression (|1 + 3
∣∣(x+ a)

∣∣) which is
not dependet on x.

If we choose |x−a| < δ < ε
|1+3|x+a|| then it would imply |x−a|

∣∣1 + 3(x+ a)
∣∣ < ε.

But when we have one δ > 0 that works, any smaller value will also work. By
choosing δ < 1 we would have:

|x− a| < 1 when ever |x− a| < δ

⇒ ||x| − |a|| ≤ |x− a| < 1

Or
⇒ |x| < 1 + |a|

⇒ |x+ a| ≤ |x|+ |a| < |2a|+ 1

⇒ [1 + 3|x+ a| ] < [1 + 3(1 + 2|a|) ]

Since, we need both the above assumptions i.e. |x− a| < δ & |x− a| < 1 to be
satisfied.So, take :

δ = min

(
1,

ε

1 + 3(1 + 2|a|)

)
And, whole discussion above proves that it would work.

�

Problem 17. Is lim 4x+1
3x−4 is continuous for x 6= 4/3?

Problem 18. Let f and g be continuous functions on [a, b] such that f(a) ≥ g(a)
and f(b) ≤ g(b). Prove f(x0) = g(x0) for at least one x0 in [a, b]

Proof. Define h(x) = f(x)−g(x). It’s given that f(a)−g(a) ≥ 0 and f(b)−g(b) ≤
0. So, by intermediate value theorem there exists a x0 ∈ [a, b]. Such that h(x0) = 0.

�

Problem 19. Suppose f is continuous on [0, 2] and f(0) = f(2). Prove there exist
x, y ∈ [0, 2] such that |y − x| = 1 and f(x) = f(y).

Proof. Define g(x) = f(x+ 1)− f(x) . Let |x− y| = 1 implies either x = y+ 1 or
y = x + 1. Take anyone of them, it won’t matter as we can exchange y with x for
another case.

Also, g(0) = f(1) − f(0) and g(1) = f(2) − f(1). Adding both the equations
g(0) + g(1) = 0, which implies that one of them is negative of other i.e. if any one
of the value is + ve the other is - ve. So, there exists a value of x ∈ [0, 1] such that
g(x) = 0 or f(x+ 1) = f(x) ≡ f(y) = f(x). �
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§4.2 Uniform Continuity

Definition 4.2.1: Uniform Continuity

Let f be a real-valued function defined on a set S ⊆ R. Then f is uniformly
continuous on S if for each ε > 0 there exists δ > 0 such that

x, y ∈ S and |x− y| < δ imply
∣∣f(x)− f(y)

∣∣ < ε

We will say f is uniformly continuous if f is uniformly continuous on dom(f).

(a) For uniformly continuous functions, there is
for each ε > 0 a δ > 0 such that when we draw
a rectangle around each point of the graph with
width 2δ and height 2ε, the graph lies completely
inside the rectangle.

(b) For functions that are not uniformly continu-
ous, there is an ε > 0 such that regardless of the
δ > 0 here are always points on the graph, when
we draw a 2ε − 2δ rectangle around it, there are
values directly above or below the rectangle.

Figure 4.2: Uniform Continuity

If your function happens to satisfy 0 < |f ′(x)| < M for every x, then
something like δ = ε/M will probably work to show uniform continuity.

Theorem 4.2.1

If f is continuous on a closed interval [a, b], then f is uniformly continuous on
[a, b].
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Theorem 4.2.2

If f is uniformly continuous on a set S and (sn) is a Cauchy sequence in S,
then (f(sn)) is a Cauchy sequence.

Problem 20. Prove that if f is uniformly continuous on a bounded set S, then f
is a bounded function on S.

Proof. Since, uniformly continuous functions are cauchy on a closed interval (and
if the interval is not closed then we can close it! We have that power.; and cauchy
sequences are bounded. �

Definition 4.2.2

Let f be a function defined domain of f. Another function f̃ is called an
extension of f if. {

dom(f) = dom(f̃)

f(x) = f̃(x)

}
∀x ∈ dom(f)

Let f be defined on (a, b), if f is uniformly continuous. Then, f can be extended
to f̃ on [a, b].

Theorem 4.2.3

A real-valued function f on (a, b) is uniformly continuous on (a, b) if and only
if it can be extended to a continuous function f̃ on [a, b].

Theorem 4.2.4

Let f be a continuous function on an interval I [I may be bounded or un-
bounded ]. Let Io be the interval obtained by removing from I any endpoints
that happen to be in I. If f is differentiable on Io and if f ′ is bounded on Io,
then f is uniformly continuous on I.

Problem 21. 1. Let f be a continuous real-valued function with domain (a, b).
Show that if f(r) = 0 for each rational number r in (a, b), then f(x) = 0 for
all x ∈ (a, b)

2. Let f and g be continuous real-valued functions on (a, b) such that f(r) = g(r)
for each rational number r in (a, b). Prove f(x) = g(x) for all x ∈ (a, b)
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Proof. 1. Suppose, towards a contradiction, that there is an x ∈ [a, b] with .
As f is continuous, there is for every ε = |f(x)|/2 some δ > 0 such that for
all x′ ∈ [a, b] with |x′ − x| < δ it follows that |f(x) − f(x′)| < ε. As , there
is however a rational x′ ∈ [a, b] with |x− x′| < δ . But now |f(x)− f(x′)︸ ︷︷ ︸

0

| <

|f(x)| < |f(x)|/2 . Contradiction!

Or

Let x ∈ [a, b], and let qn be a sequence of rational numbers, such that qn → x. By
continuity of f, we have:

f(x) = f( lim
n→∞

qn) = lim
n→∞

f(qn) = 0

Using the above result we can define a function f(x) − g(x), and f(x) = g(x) or
f(x)− g(x) = 0 for all rationals.

�

Problem 22. Let

f(x) =


0; for x irratonal
1
q ; for x = p

q

1, for x = 0

Show f is continuous at each point of R ∼ Q and discontinuous at each point of Q.

Proof. It’s easy to proof for x ∈ Q. Take a sequence (xn) of irrationals such that
xn → p/q. But, f(xn) = 0 6= f(p/q) = 1/q. Also, observe that the function is
periodic with period 1, i.e. f(x) = f(x+ 1).

For x in set of irrational numbers. For a sequence of irrationals it’s obvious that
the difference b/w the function values will be 0 always. For a sequence of rationals
we can think of any sequence of rationals coverging to x, then the denominator
value will approach infinity(it’s not a formal proof). An example is shown below
shown in the footnote below. �

Problem 23. Let

f(x) =

{
0; for x irratonal

1; for x rational

Show f is discontinuous at each point of R.

Proof. We begin by considering a sequence of irrational numbers xn converging
to a rational x0. xn = x0 + λ

n where λ ∈ R ∼ Q.Since, every element of xn is
irrational implies f(xn) = 0 6= f(x0) = 1. So, there exist a sequence in the domain
such that xn → x0 but f(xn) 6→ f(x0) for rational x0

Similarly, using the density property of rational numbers 1there exist a sequence
of rational numbers (xn) in R such that xn → x0 for x0 irrational.But f(xn) = 1 6=
f(x0) = 0. Hence , it is not continuous. �

1you need a sequence of rationals converging to the irrational x. In theory, we already know
one: consider the decimal expansion of x. When x is irrational, the sequence is necessarily infinite,
doesn’t eventually repeat itself forever. Suppose

x = m+ 0.d1d2 . . .
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Problem 24. Let f be a continuous function on [0,∞). Prove that if f is uniformly
continuous on [k,∞) for some k, then f is uniformly continuous on [0,∞).

Problem 25. Let f be a continuous function on [a, b]. Show that the function f∗

defined as f∗(x) = sup{f(y) : a ≤ y ≤ x}, for x ∈ [a, b], is an increasing continuous
function on [a, b].

Proof. Take x2 > x1 . Let S1 = [a, x1] & S2 = [a, x2]. Observe S1 ⊂ S2.By
definition f∗(x1) = sup{f(y) : a ≤ y ≤ x1} & f∗(x2) = sup{f(y) : a ≤ y ≤ x2}. So,
f(x1) ≥ f(x)∀x ∈ S1 and f(x2) ≥ f(x)∀x ∈ S2. Since, S1 ⊂ S2 so, x1 ∈ S2 implies
f(x2) ≥ f(x1). �

§4.3 Limits of Functions

In this section we’ll formalize the notion of limit of a function and this
will help us for a careful study of derivatives

Definition 4.3.1

Let S ⊆ R and S 6= ∅, let a be a real number or symbol −∞ or ∞ that is
a limit of a sequence in S. And let L be a real number or symbol −∞ or ∞.
We write limx→a f(x) = L if:

f is a function defined on S

and

for every sequence (xn) in S converging to a, we have lim
n→∞

f(xn) = L

The expression “limx→aS f(x)” is read as “limit, as x tends to a along S,of
f(x),”

Notations
S = (−∞, b) : lim

x→a
f(x) = lim

x→a−
f(x)

and
S = (a,∞) : lim

x→a
f(x) = lim

x→a+
f(x)

Question: Let a be a real number & S = (a, b) ⊆ R. Does limx→aS f(x) depends
on S. If we take a different set T = (a, b1) ⊆ R then what’s the relation b/w
limx→aS f(x)& limx→aT f(x)

where m is an integer. Let xn = m+ 0.d1 . . . dn In other words, xn is the decimal representation
of x cut off at the nth digit after the decimal point (x0 = m). Then every xn is rational, and:

lim
n→∞

xn = x
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Answer: Since, as the tn ∈ T converge to a, then after some iterations the ele-
ments of sequence tn will be the elements of set S (Assuming S ⊆ T ).then:

lim
x→aS

f(x) = lim
x→aT

f(x)

Theorem 4.3.1

Let f be a function for which the limit L = limx→aS f(x) exists and is finite.
If g is a function defined on {f(x) : x ∈ S}∪{L} that is continuous at L, then
limx→aS g ◦ f(x) exists and equals g(L).

Theorem 4.3.2

Let f be a function defined on a subset S of R, let a be a real number that is the
limit of some sequence in S, and let L be a real number. then limx→aS f(x) = L
if and only if

for each ε > 0 there exists δ > 0 such that

x ∈ S and |x− a| < δ ⇒ |f(x)− L| < ε. (4.1)

Proof. Assuming the statement and proving (3) is trivial so I leave it.
Let limn→∈∞ f(xn) = L:
Now assume limn→∞ xn = a, but (3) fails. So, there exist a ε > 0 such that for

all δ > 0 |f(xn) − f(a)| ≥ ε. Take δ = 1/n.So, it implies for all n ∈ N there exist
xn in S such that |xn − a| < 1/n while |f(xn)− f(x0)| ≥ ε. Hence aur assumption
was wrong and there exist a sequence (xn) which converges to a , but f(xn) doesn’t
converge to f(a) �

Corollary 4.3.1

Let f be a function defined on J\{a} for some open interval J containing a,
and let L be a real number. Then limx→a f(x) = L iff:

for each ε > 0 there exists δ > 0 such that
|x− a| < δ implies |f(x)− L| < ε.
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Sequence and Series of
Functions

§5.1 Power Series

Definition 5.1.1: Power Series

∑∞
0 anx

n is called a Power Series.

Definition 5.1.2: Radius of Convergence

Let β = lim sup |an|
1
n .Then Radius of convergence is defined as:

R =
1

β

Theorem 5.1.1

1.
∑∞

0 anx
n converges for |x| < R.

2.
∑∞

0 anx
n diverges for |x| > R.

Proof. Take t ∈ R. Take rt = lim sup |antn|
1
n .Then

rt = lim sup |antn|
1
n = |t| lim sup |an|

1
n = |t|β

Case 1. Let 0 < R <∞

rt = βt =
|t|
R

=


|t| < R⇒

converges by root test︷ ︸︸ ︷
rt < 1

|t| > R⇒ rt > 1︸ ︷︷ ︸
diverges by root test

Case 2. Let R =∞
Here β = 0 implies rt = 0 < 1.So, converges for all x by root test.

29
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Case 3. Let R < 0
⇒ β =∞ implies rt =∞ ; for all |t| 6= 0. Therefore Diverges. �

Example:
∑
xn . Here an = 1.

∴ lim

∣∣∣∣an+1

an

∣∣∣∣ = 1 ∴ β = 1, R = 1

. Therefore the series converges for |x| < 1. A strict inequality!.

Example: Consider the series

∞∑
n=1

(−1)n+1

n
(x− 1)n

The radius of convergence for the series
∑∞
n=1

(−1)n+1

n (y)n is R = 1, so it con-
verges for |y| < 1 or x ∈ (0, 2) at x = 0 and y = −1, we have

∞∑
n=1

(−1)n+1

n
(−1)n = −

∑ 1

n

therefore it diverges to −∞. at x = 2

∞∑
n=1

(−1)n+1

n
(1)n =

∑ (−1)n+1

n
= − ln 2

Hence,it converges & the interval of convergence is (0, 2].

Problem 26. Consider a power series
∑
anxn with radius of convergence R.Prove

that if all the coefficients an are integers and if infinitely many of them are nonzero,
then R ≤ 1.

Proof. Given |an| ≥ 1 (∵ an are integers). So, sn = sup{|ak| : k ≥ n} ≥ 1.

Further |sn|
1
n ≥ 1 implies lim |sn|

1
n ≥ 1. Or R ≤ 1 using 5.1.2. �

Problem 27. Prove that if lim sup |an| > 0, then lim sup |an|
1
n ≥ 1.

Proof. Let lim sup |an| > 0 (notice the strict inequality!). But for sake of contra-

diction assume lim sup |an|
1
n < 1. Then

∑
an converges, which implies lim an = 0

(See 3.1.1). A contradiction! �

§5.2 Uniform Convergence

Definition 5.2.1: Pointwise Convergence

Let (fn) be a sequence of real-valued functions defined on a set S ⊆ R. The
sequence (fn) converges pointwise [i.e., at each point] to a function f defined
on S if
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lim
n→∞

fn(x) = f(x) for all x ∈ S

We often write lim fn = f pointwise [on S] or fn → f pointwise [on S].
Now observe fn → f pointwise on S means exactly the following:
for each ε > 0 and x in S there exists N such that

|fn(x)− f(x)| < ε for n > N

Note the value of N depends on both ε and x in S.

Example Let fn(x) = xn for x ∈ [0, 1]. Then fn → f pointwise on [0, 1] where
f(x) = 0 for x ∈ [0, 1) and f(1) = 1. Or we can write:

lim
n→∞

fn(x) = lim
n→∞

xn =

{
1 if x = 1

0 else

Consider,

f(x) =

{
1 if x = 1

0 else

Then we can write limn→∞ fn(x) = f(x).

Definition 5.2.2: Uniform Convergence

Let (fn) be a sequence of real-valued functions defined on a set S ⊆ R. The
sequence (fn) converges uniformly on S to a function f defined on S if

for each ε > 0 there exists a number N such that

|fn(x)− f(x)| < ε for all x ∈ S and n > N

. We write lim fn = f uniformly on S or fn → f uiniformly on S.

Example: Define,

fn(x) = xn for x ∈ [0, 1]

f(x) =

{
0, x 6= 0

1, x = 0

then ε = 1/2,then we consider for all x ∈ [0, 1] and all n > N .

|fn(x)− f(x)| < ε = 1/2

|x| ≤ 1 & n > N

⇒ |fn − f | < 1/2

at x = 0 it’s not possible as |0− 1| < 1/2 is not true. So, not uniformly converging.
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Example Let f(x) = 1
nsin(nx) ∀x ∈ R

for any x limn→∞ fn(x) = 0 pointwise on R. Define f(x) = 0 then fn → f . In
fact fn → f uniformly on R. Also, let N = 1/ε .Then for n > N and all x ∈ R we
have

|fn(x)− f(x)| = |fn(x)− 0| =
∣∣∣∣ 1nsin(nx)

∣∣∣∣ ≤ 1

n
<

1

N
= ε

Since, N is independent of x.

Theorem 5.2.1

Uniform limit of continuous function is continuous.More precisely, let (fn) be
a sequence of functions on a set S ⊆ R, suppose fn → f uniformly on S, and
suppose S = dom(f). If each fn is continuous at x0 in S, then f is continuous
at x0. [So if each fn is continuous on S, then f is continuous on S.]

Remark Remember fn → f on S uniformly iff,

lim sup
n→∞

{|fn(x)− f(x)| : x ∈ S} = 0

We can also consider
∑∞
k=0 gk(x), where gk is a function of S ⊂ R.

Theorem 5.2.2

If gk is continuous ∀k and if
∑
gk converges uniformly, then it converges to a

continuous function on S.

Proof. Let fn =
∑n
k=0 gk(x) is continuous on S and fn(x) =

∑∞
k=0 gk(x) uni-

formly.
∴ f(x) =

∑∞
k=0 gk(x) is continuous. �

Corollary 5.2.1

f(x) =
∑
anx

n is a continuous function if the convergence is uniform.

Problem 28. Prove that if (fn) is a sequence of uniformly continuous functions
on an interval (a, b), and if fn → f uniformly on (a, b), then f is also uniformly
continuous on (a, b).

Proof. We need to show that ∀δ > 0 ∃ε > 0 such that |x − y| < δ implies
|f(x)− f(y)| < ε.

Using triangualar inequality we can show that:

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|

Using the ε/3 argument we can show that, there exists a N such that n > N1

implies |fn(x)− fn(y)| < ε/3 (it’s uniform cont.) and |x− y| < δ.And we can apply
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definition of uniform convergence to show |fn(y) − f(y)| < ε/3 by choosing some
N2 for x and then some N2 for y.So we have for n > N = max(N1, N2, N3).

|f(x)− f(y)| < 3 · ε
3

= ε

�



Chapter 6

Differentiation

§6.1 Why differentiation?
Better ask Newton.

Definition 6.1.1

f is a real-valued function on an open interval I Let a ∈ I. Then f is differ-
entiable at “a” if the limit :

lim
x→a

f(x)− f(a)

x− a

exists & is finite. We also sayy f has a derivative at a.

f ′(x) = lim
x→a

f(x)− f(a)

x− a

Remark ’f ′(x) itself is a function with domain f ⊆ domf .

Theorem 6.1.1

If f be diff. at x = a. Then f is continuous at a.

Proof. f(x) = (x− a) f(x)−f(a)x−a + f(a)

∴ lim
x→a

f(x) = lim
x→a

(x− a) lim
x→a

f(x)− f(a)

x− a
+ lim
x→a

f(a) = 0 · f ′(a) + f(a) (6.1)

(6.2)

�

Theorem 6.1.2: Properties

If f, g are diff. at x = a and c ∈ R then

1. (cf)′(a) = cf ′(a)

2. (f + g)′(a) = f ′(a) + g′(a)

34



CHAPTER 6. DIFFERENTIATION 35

3. (fg)′(a) = f ′(a)g(a) + f(a)g′(a)

4. ( fg )′(a) = f ′(a)g(a)−f(a)g′(a)
g(a)2

Theorem 6.1.3: Chain Rule

f be differentiable at x = a and g be differentiable at f(a). Then (g ◦ f)(x) is
diff at x = a. And (g ◦ f)′(x) = g′(f(x)) · f ′(x)

§6.2 Mean Value Theorem

Theorem 6.2.1

If f is defined on an open interval containing x0, if f assumes its maximum
or minimum at x0, and if f is differentiable at x0, then f ′(x0) = 0.

Theorem 6.2.2: Rolle’s Theorem

Let f be a continuous function on [a, b] that is differentiable on (a, b) and
satisfies f(a) = f(b). There exists [at least one] x in (a, b) such that f ′(x) = 0.

Theorem 6.2.3: Mean Value Theorem

Let f be a continuous function on [a, b] that is differentiable on (a, b). Then
there exists [at least one] x in (a, b) such that:

f ′(x) =
f(b)− f(a)

b− a

Corollary 6.2.1

Let f be a differentiable function on (a, b) such that f ′(x) = 0 for all x ∈ (a, b).
Then f is a constant function on (a, b).

Corollary 6.2.2

Let f and g be differentiable functions on (a, b) such that f ′ = g′ on (a, b).
Then there exists a constant c such that f(x) = g(x) + c for all x ∈ (a, b).

Corollary 6.2.3

Let f be a differentiable function on interval (a, b), then:

(i.) f is strictly increasing if f ′(x) > 0 for all x ∈ (a, b);

(ii.) f is strictly decreasing if f ′(x) < 0 for all x ∈ (a, b);
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(iii.) f is increasing if f ′(x) ≥ 0 for all x ∈ (a, b);

(iv.) f is decreasing if f ′(x) ≤ 0 for all x ∈ (a, b);

Theorem 6.2.4: Intermediate Value Theorem for Derivatives.

Let f be a differentiable function on (a, b). If a < x1 < x2 < b, and if c lies
between f ′(x1) and f ′(x2), there exists [at least one] x in (x1, x2) such that
f ′(x) = c.

Problem 29. Let f be differentiable on R with a = sup{|f ′(x)| : x ∈ R} < 1.
Select x0 ∈ R and define xn = f(xn−1) for n ≥ 1. Thus x1 = f(x0), x2 = f(x1),
etc. Prove (xn) is a convergent sequence.

Proof. Using the mean value theorem we can see f is a contraction, because

|f(x)− f(y)| = |f ′(c)||x− y| ≤ a|x− y|

With a < 1.
Now to see it is a convergent / cauchy sequence, select x0 and note xn = f(xn−1),

what can you say of
|xn − xm|

for arbitrary m,n?
HINT: Use triangle inequality and |xn − xn+1| ≤ an|x0 − x1| . For alternate

proof refer to Problem 6
Suppose m > n then:

|xn − xm| ≤ |xn − xn+1|+ |xn+1 − xn+2|+ · · ·+ |xm−1 + xm|

≤
m∑
k=n

ak|x0 − x1| ≤
∞∑
k=n

ak|x0 − x1| < +∞

Now, because this last series converges (a < 1), by the Cauchy criterion, given
ε > 0, there is some N such that

∞∑
k=N

ak|x0 − x1| < ε

If we pick n,m ≥ N we’re done, now we know xn is a Cauchy sequence in R, and
thus has a limit x, now

x = limxn = lim f(xn−1) = f(limxn−1) = f(x)

hence x is a fixed point. To see its uniquenes suppose x1, x2 are two fixed points,
then:

|x1 − x2| = |f(x1)− f(x2)| ≤ a|x1 − x2|

With a < 1 this is only true if x1 = x2. �
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§6.3 Taylor Theorem

Definition 6.3.1: Taylors Series

Let f be a function defined on some open interval containing c. If fk(c) exists
∀k, then the series:

∞∑
k=0

f (k)(c)

k!
(x− c)k

is called as Taylor Series of function f(x) about c. For n ≥ 1; remainder
Rn(x) is defined as:

Rn(x) = f(x)−
n−1∑
k=0

f (k)(c)

k!
(x− c)k

The remainder is important because, for any x;

f(x) =

∞∑
k=0

f (k)(c)

k!
(x− c)k if and only if lim

n→∞
Rn(x) = 0

Theorem 6.3.1

Let f be defined on (a, b) where a < c < b; here we allow a = −∞ or b =∞.
Suppose the nth derivative fn exists on (a, b). Then for each x 6= c in (a, b)
there is some y between c and x such that

Rn(x) =
fn(y)

n!
(x− c)n

Corollary 6.3.1

Let f be defined on interval (a, b) and a < c < b. If fk exists ∀k , & there
exists a single constant C such that

∣∣fk(c)
∣∣ ≤ C, then

lim
n→∞

Rn(x) = 0 ∀ x ∈ (a, b)
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Die Theorie der Integration

§7.1 Integrals

Definition 7.1.1: The Darboux Integral

Let f be a bounded function on a closed interval [a, b].1 For S ⊆ [a, b], we
adopt the notation:

� M(f, S) = sup{f(x) : x ∈ S}

� m(f, S) = inf{f(x) : x ∈ S}.

A partition of [a, b] is any finite ordered subset P having the form

P = {a = t0 < t1 < · · · < tn = b}.

The upper Darboux sum U(f, P ) of f with respect to P is the sum:

U(f, P ) =
∑ Area of rect. above the curve︷ ︸︸ ︷

M(f, [tk−1, tk]) · (tk − tk−1)

and the lower Darboux sum L(f, P ) is:

L(f, P ) =
∑

m(f, [tk−1, tk]) · (tk − tk−1)︸ ︷︷ ︸
Area of rect. below the curve

Note
U(f, P ) ≤M(f, [a, b])(b− a);

and
L(f, P ) ≥ m(f, [a, b])(b− a);

The upper Darboux integral U(f) of f over [a, b] is defined by

U(f) = inf{U(f, P ) : P is a partition of [a, b]}

and the lower Darboux integral is

L(f) = sup{L(f, P ) : P is a partition of [a, b]}

We say f(x) is integrable if on [a, b] if L(f) = U(f).

38
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Observe: L(f, {a, b}) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f, {a, b}).

Lemma 7.1.1

Let f be a bounded function on [a, b]. If P and Q are partitions of [a, b] and
P ⊆ Q, then

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P )

Lemma 7.1.2

If f is a bounded function on [a, b], and if P and Q are partitions of [a, b], then
L(f, P ) ≤ U(f,Q)

Lemma 7.1.3

If f is a bounded function on [a, b], then L(f) ≤ U(f).

Theorem 7.1.1

A bounded function f on [a, b] is integrable if and only if for each ε > 0 there
exists a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε

Definition 7.1.2: Mesh

The mesh of a partition P is the maximum length of the subintervals com-
prising P. Thus if:

P = {a = t0 < t1 < t2 · · · < tn = b},

then
mesh(P ) = max{tk − tk−1 : k = 1, 2, 3, . . . , n}

Definition 7.1.3: Rienmann Sum

Let f : [a, b]→ R be a function defined on a closed interval [a, b] of the real
numbers, R , and

P = {a = t0 < t1 < t2 · · · tn = b}

be a partition of [a, b]. A riemann sum of f associated with the partition P is
a sum of the form

n∑
k=1

f(xk)(tk − tk−1)

where xk ∈ [tk−1, tk] for k = 1, 2, 3, . . . n. The choice of xk is arbitrary, so
there are infinitely many Riemann sums associated with a single function and
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partition.

Definition 7.1.4: Riemann Integral

The function f is Riemann integrable on [a, b] if there exists a number r such
that for each ε > 0 there exists δ > 0 such that

|S − r| < δ

for every Rienmann sum of f associated with the partition P having mesh(P ) <
δ. The number r is the Riemann integral of f on [a, b] and will be provisionally

written as R
∫ b
a
f .

Theorem 7.1.2

A bounded function f on [a, b] is integrable if and only if for each ε > 0 there
exists a δ > 0 such that mesh(P ) < δ implies

U(f, P )− L(f, P ) < ε

for all partitions P of [a, b].

§7.1.1 Fundamental Theorem of Calculus

Theorem 7.1.3

If g is a continuous function on [a, b] that is differentiable on (a, b), and if g′

is integrable on [a, b], then ∫ b

a

g′ = g(b)− g(a)

Theorem 7.1.4

Let f be an integrable function on [a, b]. For x in [a, b], let

F (x) =

∫ x

a

f(t)dt.

Then F is continuous on [a, b]. If f is continuous at x0 in (a, b), then F is
differentiable at x0 and

F ′(x) = f(x)

§7.1.2 Intermediate Value Theorem for Integrals.

Theorem 7.1.5: Intermediate Value Theorem for Integrals.
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If f is a continuous function on [a, b], then for at least one x in (a, b) we have:

f(x) =

∫ b

a

f

Problem 30. Let f(x) = x for rational x and f(x) = 0 for irrational x.

1. Calculate the upper and lower Darboux integrals for f on the interval [0, b].

2. Is f integrable on [0, b]?
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Differentiation and
Integration of Power Series

Theorem 8.0.1: Weierstrass M-test

Let (Mk) be a sequence of non-negative real numbers where
∑
Mk < ∞. If

|gk(x)| ≤Mk for all x in a set S, then
∑
gk converges uniformly on S

Proof. Let ε > 0 , ∃N such that n ≥ m > N ⇒
∑∞
k=mMk < ε. Then if

n ≥ m > N and x ∈ S,∣∣∣∣∣∣
n∑

k=m

gk(x)

∣∣∣∣∣∣ ≤
n∑

k=m

|gk(x)| ≤
n∑

k=m

Mk < ε

∴ by cauchy criterion on uniform cont. on S,
∑
gk converges uniformly on S. �

Problem 31. Show that if the series
∑
gn converges uniformly on a set S, then

lim
n→∞

sup{|gn(x)| : x ∈ S} = 0

Proof. For ε > 0 , ∃N such that n ≥ m > N ⇒
∣∣∑n

m gk(x)
∣∣ < ε.

In particular n > N
⇒ |gn| < ε ∀ x ∈ S

∴ sup{|gn(x)| : x ∈ S} ≤ ε
lim
n→∞

sup{|gn(x)| : x ∈ s} = 0

�

Theorem 8.0.2

Let
∑
anx

n be a power series with radius of convergence R > 0. If 0 < R1 <
R, then the power series converges uniformly on [−R1, R1] to a continuous
function.
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Lemma 8.0.1

f the power series
∑
anx

n has radius of convergence R, then the power series∑
nanx

n &
∑ an

n+ 1
xn+1

have the same radius of convergence R.

Theorem 8.0.3

Suppose f(x) =
∑
anx

n has radius of convergence R > 0 Then∫ x

0

f(t)dt =
∑ an

n+ 1
xn+1 ∀x < R

Theorem 8.0.4

Let f(x) =
∑
anx

n have radius of convergence R > 0. Then f is differentiable
on (−R,R) and

f ′(x) =

∞∑
n=1

aanx
n−1 ∀|x| < R

Theorem 8.0.5: Abel’s Theorem

Let f(x) =
∑
anx

n be a power series with 0 < R <∞. If the series converges
at x = R, then f is continuous at x = R. If the series converges at x = −R,
then f is continuous at x = −R.



Appendix A

Power series of some
common functions[4]

Exponential Series

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ · · · .

It converges for all x ∈ R.

Natural logarithm

ln(1− x) = −
∞∑
n=1

xn

n
= −x− x2

2
− x3

3
− · · · ,

ln(1 + x) =

∞∑
n=1

(−1)n+1x
n

n
= x− x2

2
+
x3

3
− · · · .

They converge for |x| < 1

Geometric series
1

1− x
=

∞∑
n=0

xn

1

(1− x)2
=

∞∑
n=1

nxn−1

1

(1− x)3
=

∞∑
n=2

(n− 1)n

2
xn−2.

All are convergent for |x| < 1. These are special cases of Binomial Series.

Binomial series The binomial series is a power series

(1 + x)α =

∞∑
n=0

(
α

n

)
xn

whose coefficients are the generalized binomial coefficients(
α

n

)
=

n∏
k=1

α− k + 1

k
=
α(α− 1) · · · (α− n+ 1)

n!
.
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Trignometric Functions The usual trigonometric functions and their inverses
have the following power series:

sinx =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x− x3

3!
+
x5

5!
− · · · for all x

cosx =

∞∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2!
+
x4

4!
− · · · for all x

tanx =

∞∑
n=1

B2n(−4)n (1− 4n)

(2n)!
x2n−1 = x+

x3

3
+

2x5

15
+ · · · for |x| < π

2

secx =

∞∑
n=0

(−1)nE2n

(2n)!
x2n = 1 +

x2

2
+

5x4

24
+ · · · for |x| < π

2

arcsinx =

∞∑
n=0

(2n)!

4n(n!)2(2n+ 1)
x2n+1 = x+

x3

6
+

3x5

40
+ · · · for |x| ≤ 1

arccosx =
π

2
− arcsinx

=
π

2
−
∞∑
n=0

(2n)!

4n(n!)2(2n+ 1)
x2n+1 =

π

2
− x− x3

6
− 3x5

40
− · · · for |x| ≤ 1

arctanx =

∞∑
n=0

(−1)n

2n+ 1
x2n+1 = x− x3

3
+
x5

5
− · · · for |x| ≤ 1, x 6= ±i

All angles are expressed in radians.The numbers Bk appearing in the expan-
sions of tanx are the Bernoulli numbers. The Ek in the expansion of secx are
Euler numbers.

Remember This text only contains important theorems and definitions from the
textbook Elementary Analysis. The problems and solutions were discussed
during the lectures by Prof. Chandrakant Aribam. And some of the problems
for the book are also discussed (non-trivial problems).

https://en.wikipedia.org/wiki/Bernoulli_number
https://en.wikipedia.org/wiki/Euler_number
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