MTH102: Analysis in One variable Home Work No. 05 Sent on 09 March 2018

- Please do as many problems as possible.
- Please maintain a separate notebook for home work problems.
- Tutors will discuss some of these problems during tutorial sessions.
- \mathbb{N} denote the set of natural numbers.
- \mathbb{Z} denote the ring of integers.
- O denote the field of rational numbers.
- \mathbb{R} denote the field of real numbers.
- (1) Let $\alpha, \beta \in \mathbb{R}$ be two real numbers. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by

$$f(x) = |x - \alpha| + |x - \beta|.$$

Determine the set of points at which f is differentiable.

(2) Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} x^2 & \text{if } x \ge 0\\ 0 & \text{if } x < 0. \end{cases}$$

- (a) Show that f is differentiable at all $x \in \mathbb{R}$ and determine the function $f' : \mathbb{R} \to \mathbb{R}$.
- (b) Is the function f' continuous on \mathbb{R} ?
- (c) Is the function f' differentiable on \mathbb{R} ?
- (3) Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} x^2 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

- (a) Prove that f is continuous at x = 0.
- (b) Prove that f is differentiable at x = 0 and find the derivative.
- (c) What happens at points $x \neq 0$?
- (4) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. Suppose that f(0) = 0, f(1) = 1 and f(2) = 1. (a) Show that $f'(x) = \frac{1}{2}$ for some $x \in (0, 2)$. (b) Show that $f'(x) = \frac{1}{7}$ for some $x \in (0, 2)$.

 - Hint: Use the Mean Value Theorem.
- (5) Let $f : \mathbb{R} \to \mathbb{R}$ be a function with $|f(x) f(y)| \le (x y)^2$ for all $x, y \in \mathbb{R}$. Then prove that f is a constant function.

Hint: Show that f is differentiable with f'(x) = 0 for all $x \in \mathbb{R}$.

- (6) Prove that $\sin(x) \le x$ for all real numbers $x \ge 0$. Hint: Show that the function $x - \sin(x)$ is increasing.
- (7) A function $f: \mathbb{R} \to \mathbb{R}$ is said to be odd if f(-x) = -f(x) and even if f(-x) = f(x) for all $x \in \mathbb{R}$. Prove that the derivative of an even function is an odd function.
- (8) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function satisfying $f(x)^3 + 2xf(x) 3x^2 = 0$ for all x. Determine the function f'.
- (9) Let f be a twice differentiable function on an open interval (a, b) such that f''(x) = 0 for all $x \in (a, b)$. Then prove that f has the form $f(x) = \alpha x + \beta$ for some $\alpha, \beta \in \mathbb{R}$.