MTH102: Analysis in One variable Home Work No. 01 13 January 2018

- Please do as many problems as possible.
- Please maintain a separate notebook for home work problems.
- Tutors will discuss some of these problems during tutorial sessions.
- \mathbb{N} denote the set of natural numbers.
- \mathbb{Z} denote the ring of integers.
- O denote the field of rational numbers.
- \mathbb{R} denote the field of real numbers.
- (1) Use the principle of mathematical induction to prove the following:
 - (a) $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ for all $n \in \mathbb{N}$.
- (b) $n^2 > n+1$ for all $n \in \mathbb{N}$ such that $n \ge 2$. (c) $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = 2 \frac{1}{2^n}$ for all $n \in \mathbb{N}$. (2) Prove that $(2+5^{1/3})^{1/2}$, $(2+2^{1/2})^{1/2}$ and $(5-3^{1/2})^{1/3}$ are not rational numbers.
- (3) Prove that $||a| |b|| \le |a b|$ for all $a, b \in \mathbb{R}$.
- (4) Prove that $|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| + \dots + |a_n|$ for any *n* real numbers.
- (5) Prove that $|a b| \le c$ if and only if $b c \le a \le b + c$.
- (6) Let $a, b \in \mathbb{R}$. Prove that if $a \leq c$ for all c > b, then $a \leq b$.
- (7) Prove that the set of irrational numbers is dense in the set of real numbers.
- (8) Determine whether the following sets are bounded or not. If so, then determine their supremums and infimums. Do these numbers lie in the given sets?

 - (a) $A = \{r \in \mathbb{Q} \mid r^2 < 4\}.$ (b) $B = \{1 \frac{1}{3^n} \mid n \in \mathbb{N}\}.$

(c)
$$C = \{ n^{(-1)^n} \mid n \in \mathbb{N} \}.$$

- (d) $D = \{\frac{1}{n} \mid n \in \mathbb{N}\}.$
- (9) Let A be a subset of \mathbb{R} and $b \in \mathbb{R}$ a fixed real number. Suppose that $a < b + \epsilon$ for all $a \in A$ and each $\epsilon > 0$. Then prove that b is an upper bound for A.
- (10) Suppose that A, B are non-empty sets of real numbers such that $x \leq y$ for all $x \in A$ and $y \in B$. Then prove that $\sup A \leq \inf B$.
- (11) Write down a proof of the Binomial Theorem using the principle of mathematical induction.