IISER Mohali MTH102: Analysis in One Variable Homework Sheet No. 08 To be discussed during tutorial on March 11, 2016

- Please solve all the problems.
- Tutors will discuss **tutorial problems** during tutorial sessions.
- If time permits, tutors may also discuss **extra problems** during tutorial sessions.

Tutorial Problems:

- (1) Let $f_n(x) = (x \frac{1}{n})^2$ for $x \in [0, 1]$.
 - (a) Does the sequence (f_n) converge point wise on the set [0,1]? If so, then give the limit function.
 - (b) Does the sequence (f_n) converge uniformly on the set [0,1]? If so, then prove your assertion.
- (2) Repeat the above exercise for $f_n(x) = x x^n$ for $x \in [0, 1]$. (3) Repeat the above exercise for $f_n(x) = \frac{1}{1+x^n}$ for $x \in [0, \infty)$.
- (4) Let $S \subseteq \mathbb{R}$. Prove that if a sequence (f_n) converge to f uniformly on S and a sequence (g_n) converge to g uniformly on S, then the sequence $(f_n + g_n)$ converge to f + g uniformly on S. Hint: Use the definition of uniform convergence and $\frac{\epsilon}{2}$ trick.
- (5) Let $f_n(x) = x$ and $g_n(x) = \frac{1}{n}$ for all $x \in \mathbb{R}$. Let f(x) = x and g(x) = 0 for all $x \in \mathbb{R}$. (a) Prove that (f_n) converge to f uniformly on \mathbb{R} and (g_n) converge to g uniformly on \mathbb{R} . (b) Prove that the sequence $(f_n g_n)$ does not converge to fg uniformly on \mathbb{R} .
- (6) Let $S \subseteq \mathbb{R}$. Prove that if (f_n) is a sequence of uniformly continuous functions on S converging uniformly to f on S, then f is also uniformly continuous on S.

Hint: Use the definition of uniform convergence, uniform continuity and $\frac{\epsilon}{3}$ trick.

Extra Problems:

- (1) Repeat the tutorial problem (1) for $f_n(x) = \frac{5+3\sin^2(nx)}{\sqrt{n}}$ for $x \in \mathbb{R}$.
- (2) Let (f_n) be a sequence of continuous functions on [a, b] converging uniformly to a function f on [a,b]. Let (x_n) be a sequence in [a,b] converging to real number x. Prove that $\lim_{n\to\infty} f_n(x_n) =$ f(x).

Hint: Use the definition of uniform convergence, continuous function and $\frac{\epsilon}{3}$ trick.