IISER Mohali MTH102: Analysis in One Variable Homework No. 02 To be discussed during tutorial on January 22, 2016

- Please solve all the problems.
- **Tutorial Problems** will be discussed during tutorial sessions.
- If time permits, tutors may also discuss **Extra Problems** during tutorial sessions.

Tutorial Problems:

- (1) Let S and T be non-empty bounded subsets of \mathbb{R} . Let $S + T = \{s + t \mid s \in S \text{ and } t \in T\}$.
 - (a) Prove that if $S \subseteq T$, then $inf(T) \leq inf(S) \leq sup(S) \leq sup(T)$.
 - (b) Prove that $sup(S \cup T) = \max\{sup(S), sup(T)\}.$
 - (c) Prove that $inf(S \cup T) = \min\{inf(S), inf(T)\}.$
 - (d) Prove that sup(S+T) = sup(S) + sup(T).
 - (e) Prove that inf(S+T) = inf(S) + inf(T).
- (2) Let I be the set of all irrational numbers. Prove that if a < b are two real numbers, then there exists $x \in \mathbb{I}$ such that a < x < b.
- (3) Prove that if 0 < a is a real number, then there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < a < n$.
- (4) Determine the limits of the following sequences and prove your claims:
 - (a) $\lim \frac{3n+1}{5n-2}$. (b) $\lim \frac{(-1)^n}{n}$.
- (5) Give an example of a sequence of rational numbers converging to an irrational number.
- (6) Let (s_n) be a sequence of non-negative real numbers and let $\lim s_n = s$. Prove that $\lim \sqrt{s_n} = \sqrt{s}$.
- (7) Let (s_n) be a sequence such that $\lim s_n = s$. Let $a \in \mathbb{R}$ and $s_n \ge a$ for all but finitely many n. Prove that $s \geq a$.

Extra Problems:

- (1) Let S and T be non-empty subsets of \mathbb{R} , not necessarily bounded. Prove that if $S \subseteq T$, then $inf(T) \le inf(S) \le sup(S) \le sup(T).$
- (2) Determine the limits of the following sequences and prove your claims:
 - (a) $\lim \frac{n}{n^2+1}$.
 - (b) $\lim(\sqrt{n^2 + n} n)$.
 - (c) $\lim \frac{1}{n} \sin(n)$.
- (3) Prove that the following sequences do not converge.
 - (a) $(-1)^n n$.
 - (b) $\sin(\frac{n\pi}{3})$. (c) $\cos(\frac{n\pi}{3})$.
- (4) Give an example of a sequence of irrational numbers converging to a rational number.
- (5) Give an example of a sequence (s_n) such that $\lim |s_n|$ exists but $\lim s_n$ does not exist.