MTH102: Analysis in One variable Home Work Problems: 01 10 January 2016

- Please do all the problems.
- Maintain a separate notebook for home work problems.
- **Tutorial Problems** will be discussed during the tutorials.
- If time permits, the tutors may discuss **Extra Problems** during the tutorials.

Tutorial Problems:

- (1) Using the principle of mathematical induction, prove that $1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$ for all $n \in \mathbb{N}$.
- (2) Prove that $(2+5^{1/3})^{1/2}$ is not a rational number.
- (3) Prove that if 0 < a < b, then $0 < b^{-1} < a^{-1}$ for all $a, b \in \mathbb{R}$.
- (4) Prove that $||a| |b|| \le |a b|$ for all $a, b \in \mathbb{R}$.
- (5) Prove that $|a_1 + a_2 + \cdots + a_n| \leq |a_1| + |a_2| + \cdots + |a_n|$ for any set of n real numbers for each $n \in \mathbb{N}$.
- (6) Prove that $|a b| \le c$ if and only if $b c \le a \le b + c$.
- (7) Let $a, b \in \mathbb{R}$. Prove that if a < c for all c > b, then a < b.
- (8) Determine whether the following sets are bounded above and bounded below. If so, then give an upper and a lower bound.

 - (a) $\{r \in \mathbb{Q} \mid r^2 < 4\}.$ (b) $\{1 \frac{1}{3^n} \mid n \in \mathbb{N}\}.$ (c) $\{n^{(-1)^n} \mid n \in \mathbb{N}\}.$

Extra Problems:

- (1) Using the principle of mathematical induction, prove that $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = 2 \frac{1}{2^n}$ for all $n \in \mathbb{N}$.
- (2) Using the principle of mathematical induction, prove that $n^2 > n+1$ for all $n \in \mathbb{N}$ such that $n \ge 2$.
- (3) Prove that $(2+2^{1/2})^{1/2}$ and $(5-3^{1/2})^{1/3}$ are not a rational numbers.
- (4) Let A be a subset of \mathbb{R} and let $b \in \mathbb{R}$ a fixed real number. Suppose that for all $a \in A$ and $\epsilon > 0$, we have $a < b + \epsilon$. Then prove that b is an upper bound for A.
- (5) Using the principle of mathematical induction, write down a proof of the binomial theorem.