IISER Mohali MTH102: Analysis in One Variable Homework No. 05 To be discussed during tutorial on February 19, 2016

- Please solve all the problems.
- Tutors will discuss **tutorial problems** during tutorial sessions.
- If time permits, tutors may also discuss **extra problems** during tutorial sessions.

Tutorial Problems:

- (1) Determine whether the following series converge.
- (1) Determine international formula (1) Determine international (1) between (1)
- (a) $\sum_{n=1}^{\infty} (a_n + b_n) = A + B.$ (b) $\sum_{n=1}^{\infty} ka_n = kA$ for all $k \in \mathbb{R}$. (c) Can we say that $\sum_{n=1}^{\infty} a_n b_n = AB$? (3) Prove that if $\sum_{n=1}^{\infty} |a_n|$ converges and (b_n) is a bounded sequence, then $\sum_{n=1}^{\infty} a_n b_n$ converges. Hint: Use the Cauchy criteria.
- (4) Let $f:(a,b) \to \mathbb{R}$ be a continuous function such that f(r) = 0 for each rational number $r \in (a,b)$. Then prove that f(x) = 0 for each $x \in (a, b)$.
- (5) Let $f(x) = \frac{1}{r} \sin(\frac{1}{r^2})$ for $x \neq 0$ and f(0) = 0. Show that f is not continuous at 0.

Extra Problems:

- (1) Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be two series such that $a_n = b_n$ for all but finitely many $n \in \mathbb{N}$. Then prove the following:
- (a) $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges. (b) $\sum_{n=1}^{\infty} a_n$ diverges if and only if $\sum_{n=1}^{\infty} b_n$ diverges. (2) Prove that $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = |x| + 2x is a continuous function.
- (3) Give two continuous functions $f, g : \mathbb{R} \to \mathbb{R}$ such that $f \circ g \neq g \circ f$.