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LECTURE 1

Solving linear equations - basic examples

We will begin by looking at a problem that should be familiar from high school
mathematics - solving systems of linear equations. Suppose we have variables
X1q,...,X,, alinear equation in these n-variables is an equation of the form

a1X1+...+aan=b

where aq,...,a,,b are all “constants”. Generally this means that they are fixed
numbers of a certain kind, the value of which is either known or assumed to be known
in the context of the given problem. In this lecture, for the sake of definiteness, we
will say that all our constants are in the set of real numbers, which will be denoted
by R. We will see later that all the arguments in this lecture apply even if the
constants lie in the set of rational numbers (denoted by Q) or the set of complex
numbers (denoted by C).
A system of m linear equations in n variables looks something like this:

a1 X1 + apXe + -+ anX, = b
a12X1 + axXe + - 4+ aX, = b
am1 X1 + a2 Xo + -+ @ Xn = by

Here a;; and b; is a constant (i.e. a real number, by our current convention) for
every ¢ and j where 1 <i<mand 1 <j <n.

Given any system of equations, one typically tries to solve them by manipulating
them in some way and creating new equations. For instance consider the following
example:

ExaMmpPLE 1.1. We want to solve the equation
X +2=05. (1.1)

We add —2 to both sides of the equation to get the equation X +2+(—2) = 5+(—2),
which can be rewritten as

X =3. (1.2)

We observe that the only real number that can be substituted in place of X in
equation (1.2) to get a true statement is 3. However, is it automatically clear that
this is also a solution for equation (1.1)7 Not quite. This is something we have to
check. So we substitute 3 in the first equation and see that

3+2=5
is a true statement. O

Why did we have to check the solution by substituting 3 in place of X in
equation (1.1)? Because generally when we perform some operation on an equation
to create a new equation, we can only say that the old equation implies the new
equation, and mot the other way around. In other words, solutions of the first
equation will necessarily be solutions of the second equation, but solutions of the
second equation may not be solutions of the first equation. The following example
will illustrate this problem:
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ExaMPLE 1.2. Let X denote a variable. Consider the equation
X =5.

Obviously, the only real number which may be substituted in this equation to get a
true statement is 5. However, suppose we square both sides of this equation to get
a new equation as follows:

X? =25
Now, this solution has two solutions - 5 and —5. However, —5 is not a solution of
the original equation. O

However, in some situations, we can actually deduce that the new equation is
equivalent to the old equation. For instance:

(1) Let ¢ be a non-zero real number. Given an equation of the form A = B,
if we multiply both sides by ¢, we get the equation cA = ¢B. This new
equation is equivalent to the old one since we can multiply it by 1/c to
deduce the old equation from it.

(2) Let ¢ be any real number. Given an equation of the form A = B, if we
add ¢ to both sides of this equation, we get the equation A + ¢ = B + c.
This new equation is equivalent to the old one since we can add —c to
both sides to deduce the old equation from it.

We will use this observation to deal with some easy examples in which our sys-

tem consists of only one equation. To make matters even simpler in the beginning,
we focus on equations in which n = 1, i.e. there is only one variable.

ExAMPLE 1.3. Let us solve the equation
3X =5. (1.3)
This is very easy. We multiply both sides by 1/3 to get
X =5/3. (1.4)

Notice that equation (1.4) is equivalent to (1.3) because of our observations above.
So it is enough to solve this new equation. It is clear that the only real number
which can be substituted in place of X in equation (1.4) is 5/3. So, this is the
only solution of equation (1.3) as well. Thus, the solution set (i.e. the set of all
solutions) for this equation is {5/3}. O

EXAMPLE 1.4. The equation 0 - X = 0 cannot be solved by the above method
since we cannot multiply both sides by 1/0 (since there is no such thing as 1/0).
But we see at once that any number can be substituted for X in this equation to
get a true statement. Thus, the solution set of this equation is R. O

ExaMPLE 1.5. The equation 0 - X = 2 also cannot be solved by the method
in Example 1.3, but this time it is easy to see that this equation has no solutions.
Thus, the solution set for this equation is the empty set {} which is denoted by
. O

Though we picked some specific examples, it should be easy for you to see that
any linear equation in one variable is of the above three types. Its solution set could
be of three kinds - the empty set, a singleton set or the whole of R.

What about systems of equations? Let us consider a system of linear equations
in one variable.

ExaMPLE 1.6. Consider the system

a1X=b
a2X=b
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where ai1,a9,b are all constants. We wish to find all values of X which satisfy
these two equations simultaneously. So, we first solve any one of the two equations.
Suppose we solve the first equation. We will have three cases:

(i) If equation a; X = b has no solutions, then clearly the system as a whole
also has no solutions.

(ii) If the solution set of the equation a3 X = b is of the form {c} for some
c € R, then we check whether c satisfies the equation as X = b or not by
directly substituting ¢ in place of X in this equation. If it ¢ satisfies the
second equation, this means that the solution set of the system is {c}. If
¢ does not satisfy the second equation, the solution set is (7.

(iii) If the solution set of a; X = b is R, then we solve the second equation
using the above methods. The solution set of the system is then identical
to the solution set of the second equation. O

Now let us try something a little more complicated — let us consider a single
equation with two variables.

EXAMPLE 1.7. We wish to solve equations of the form a; X1 + a2 Xs = b where
a1, as,b are constants. We look at various cases:

(i) If a; = as = b = 0, then any ordered pair of real numbers (z1, x2) satisfies
this equation. So, in this case the solution set is R2.

(ii) If a3 = a2 = 0, but b # 0, then there are no solutions. So, in this case the
solution set is .

(iii) Suppose a; # 0. (We are making no assumptions about ag in this case.)
In this case, we can construct a solution by choosing an arbitrary value
for X5. Indeed, let t be any real number. We claim that there is unique
real number s such that (s,t) is a solution. To see this, we substitute ¢ in
place of X5 to get the equation

a1 X1 +ast=0b
which is equivalent to

ai X1 =b— agt.
We know from our analysis of single variable equations that, this second
equation can be uniquely solved for X; (since a; # 0). Indeed, we have
X1 = % Thus, for any real number ¢, we can come up with a solution
of the form (=921 ¢).

1
Thus, the solution set is

g .= {((b*agt)

ai
If 1 # to, clear the ordered pairs ((b— ast1)/a, t1) and ((b— aste)/a1,t2)
cannot be equal. Thus, the function ¢t — ((b — ast)/a1,t) is a bijection
between the set S and the set R. Thus, we see that in this case, the
solution set is in bijection with R.

,t) :teR}.

(iii) If a; = 0 and as # 0, we can interchange the roles of a; and as. A
calculation similar to the one above shows that in this case the solution
set is

b—ait
(6, 2=y e gy
as

and that this set is in bijection with R.

Thus, we see that the solution of this equation can be of three forms — an empty
set, a set in bijection with R or the whole of R2. If you recall some high school
coordinate geometry, you will see that when a; # 0 or as # 0, the set is actually a
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line in the Cartesian plane. Thus, the solution set is either the empty set, a line or
the entire plane. O



LECTURE 2

Systems of linear equations - further examples

‘We continue our discussion with our study of systems with a single linear equa-
tion.

ExaMpPLE 2.1. Consider the equation
a1 X1 +asXo +a3X3=0»

where a1, a2, as,b are all in R.

This equation should be solved exactly along the same lines as in 1.7. If a; = 0,
then X; does not really play any role in this equation and so can take any value.
Then we solve the equation a2 X3 + a3 X3 = b as in 1.7. Solutions of the original
equation can be easily derived from this. (Can you work out the rest of this case in
detail?)

We will focus on the case a; # 0. In this case, we can assign arbitrary values
to X5 and X3. Suppose we set Xo = to and X3 = t3 where to, t3 are real numbers.
Then, we can solve the equation

a1X1 =b— a2t2 — a3t3

to obtain the value of X;. Thus, the solution set is

b — asty — asts
{(H> s ER}.
1

Notice that here Xy and X3 can take arbitrary values. In some sense, we have
only renamed them to t5 and t3. However, note that we know exactly which values
to and t3 are allowed to take while we did not know what values X5 and X5 could
take in the beginning. Also observe that t5 and t3 can take values independently
of each other (meaning that choosing a particular value for t5 does not affect our
choice of t3 - it can be chosen entirely freely as well). We say that the solution
depends on two parameters. We will make all this more precise as we go along. [

We will now move on to solving systems containing more than one equation.
For this, we first look into how we manipulate systems of equations. Just like
the case of single-equation systems, we modify our given equations by performing
operations on them to produce new systems of equations. The new system will
generally be a consequence of the old one, but the reverse may not be true. Thus,
any solution of the old system will definitely be a solution of the old system, but
the new system may have some solutions which are not solutions of the old system.
This can be avoided if the operations we perform are reversible, i.e. if there exists
another operation which allows us to deduce the old system from the new system.

Suppose we have been given a system of n equations. We write them one below
the other in n-rows. FOr instance, suppose they look like this:

A= DBy (Ev)
Ay = By (EQ)
A, = B,. (Ey)
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We will list some reversible operations that we would like to perform on this system.
(This is not an exhaustive list of all reversible operations. We are only listing the
operations we need.)

(1)

Adding a constant multiple of one equation to another: Let x € R. In
this operation, we multiply z times equation (Ej) to the equation (E;)
to obtain a new equation, which we denote by (E7). Then we delete the
equation (E;) and write the equation (Ej) in its place. Thus, now the
system will appear as follows:

Ay =B (E1)
Ak = ];?k (Ek)
A+ xAk = él + zBy (E)
An = én. (En)

Notation: Since we have added x times the k-th row to the I-th row in
our system, we will use the shorthand notation R; + xRj to denote this
operation.

Reversibility: Note that this operation is reversible. Indeed, if we per-
form the operation R; + (—xz)Rj, we will recover our original system of
equations.

Replacing an equation by a non-zero multiple: Let x be a non-zero con-
stant. In this operation, we replace equation (Ej) by the equation

xAk = Z‘Bk.

Notation: We will use the shorthand notation xRy to denote this oper-
ation.

Reversibility: This operation is reversible since we can recover the orig-
inal system by applying the operation (1/z)Rjy. Note that in order to do
50, (1/x) needs to be defined, which is why we need the condition x # 0.
Interchanging two equations: In this operation, we simply change the posi-
tions of the equations (Ey) and (E;). In other words, we write the equation
(E;) in the k-th row and the equation (Fj) in the [-th row.

Notation: We will denote this operation by Ry < R;.

Reversibility: This operation is reversible since we can apply it again to
the new system to recover the old system.

Now let us apply these operations to system with two equations in two variables.

EXAMPLE 2.2. We wish to solve the following system

aX1+cY =e
bX +dY = f

where a, b, c,d, e, f are constants.

One simple way to solve this problem is to first solve the first equation (as we
have done above), and then substitute its solutions in the second one to see which
of them are solutions to both equations. This is a perfectly reasonable method, but
we adopt a slightly different approach.

The idea is to use the above operations to reduce the coefficient of X in one of
the equations to 0. Once this is done, the second equation can be easily solved for
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Y. Then, we can substitute the value obtained for Y in the first equation and solve
it to obtain the value of X.

Suppose a = b = 0. Then X does not really matter in this system and can take
any value in R. We may then simply focus on the system consisting of the equations
cY =cand dY = f. (Do you see how to write the solution set of the first system
after solving this second system?)

Now suppose that at least one of the two numbers a and b is non-zero. We would
like to focus on the situation in which the coefficient of X in the first equation is
non-zero. So, if a = 0 and b # 0, we perform the operation R; <> Ry to obtain the
system

bX +dY = f
aX +cY =e.

So, we may now assume that a # 0. We first perform the operation (1/a)R;.

X + (¢/a)Y = (e/a)
bX +dY = f

It is now easy to see how we may reduce the coefficient of X in the second equation
to 0. We perform the operation Ry + (—b)R;.

X + (¢/a)Y = (e/a)
0~X+(d—bC)Y—f—be
a a
This may be rewritten as follows:
X + (¢/a)Y = (e/a)
ad — bc) v af —be

a a

O«X+(

Thus, if ad—bc = 0 and a f —be = 0, then Y can take any value t in R. For every
value ¢, we may substitute it in place of Y in the first equation to get X = e’TtC
Thus, in this case, the solution set will be

() rea}

If ad — be = 0 but af — be # 0, then no real number can be substituted in place
of Y in the second equation to get a true statement. Thus, in this case the solution

set is .
If ad — bc # 0, we may perform the operation —%—R5 to get the system

X + (¢/a)Y = (e/a)

af —be
0-X+Y = .
ad — be
Thus, we can immediately read off the value of Y in the solution to be Zﬁ:l}:.

So now we could just substitute this value in the first equation to solve for X.
However, there is a more elegant approach. We can simply perform the operation
Ry + (—c¢/a)Ry to remove Y from the first equation. This gives us the system

X+0-Y—(e/a)—m
af —be

ad —be’

0-X+Y =
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On simplifying, this takes the form

ed —cf
X+0v=2"9Y
* ad —be
af — be
0-X+Y=———.
* ad — be

Thus, in this case, the solution set is

ed—cf af —be
(adbc’ adbc)

This completes our solution for a system of two linear equations in two variables. [



LECTURE 3

Matrices

In this lecture, we will begin to work out an algorithm to solve systems of
linear equations. Recall that we wish to manipulate systems of linear equations
using certain reversible operations. These are listed below with the notation used
to indicate them:

(1) R; + zR;: Adding x times equation (j) to equation (i), where z is any
constant. The resulting equation replaces equation 1.

(2) xR;: Multiplying equation (i) by = where & # 0. The resulting equation
replaces equation (1).

(3) R; < R;: Interchanging equations (z) and (j).

Note that while we are doing these manipulations, we usually list the equations
one below the other in increasing order of their label. Also, we usually fix an
order on the variables and always write the equation so that the variables appear
in that order from left to right. For instance, if the variables are X, Y and Z, we
fix the order (X,Y,Z) and write any linear equation involving these variables as
aX +bY +¢Z = d (so that X, Y and Z appear in that order from left to right).
Thus, if we have 4 equations in these three variables, they will look like:

(leX + a12Y + ang = b1
a1 X + axY + axsZ = by

asi + a3zY + azsZ = b3
ann X + amY + am3zZ = by

Thus, the terms involving a fixed variable appear neatly in a vertical column. Thus,
we could completely omit to write the variables and represent the above system as

a1 a2 aiz | b

ao1 Qg Gz | bo

a31 aszy asz | b3

Q41 Q42 Q43 | by
This is called an augmented matriz. Before we explain this term, we first define a
matric.

DEFINITION 3.1. Let m and n be positive integers. An m x n matrix A is a
collection of mn numbers arranged in a rectangular array as follows:

a1l . e PPN A1n

Am1 e PN Amn

The number in the i-th row and j-th column is called the (i, j)-entry of the matrix
and is denoted in the above representation as a;;.

In the above definition, the word number can be interpreted to mean real num-
ber, complex number, integer, or whatever you like. For now, we will continue to
assume that they are real numbers.

13
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An augmented matriz is just a matrix in which the last column is considered to
be special in some way and is separated from the rest of the matrix by a separator.
If you like, you may also see an m x (n + 1) augmented matrix as being made of
a m x n matrix written on the left (which we will refer to as the left block of the
augmented matrix), and a m x 1 matrix written on the right (the right block of the
augmented matrix) . Thus, we see that an augmented m x (n + 1) matrix can be
used to represent a system of m linear equations in n variables.

The elementary row operations listed above can now be performed on matrices.
Recall the examples from the earlier lectures and Tutorial 1. The objective of these
row operations is to reduce the left block of the augmented matrix into a particularly
simple form so that the solutions of the linear system can be computed easily. We
now describe this “simple form” in the following definition:

DEFINITION 3.2. A matrix is said to be a row reduced echelon matriz (or to be
in row reduced echelon form) if it satisfies the following conditions:

(a) The leftmost non-zero entry in every row is equal to 1. Such an entry is
called a pivot.

(b) If a column contains a pivot, all other entries in that column are equal to
0.

(c) If i < j are positive integers and the i-th and j-th rows contain pivots, the
pivot in the j-th row is to the right of the pivot in the é-th row. (More
precisely, if the pivot in the i-th row occurs in the k;-th column and the
pivot in the j-th row j the k;-th column, then k; < k;.)

(d) All the zero rows (i.e. rows filled with 0’s) occur at the bottom of the
matrix. In other words, no non-zero row occurs below a zero row.

We list some matrices and check whether they are in row reduced echelon form
or not. All the pivots are indicated by a box around them.

ExXAMPLE 3.3. The following matrices are in row reduced echelon form:

(1] 4 3 0 2 o0 011 0o o 3
0 00 [1] 5 0 and [0 0 0 [1] 0 2
000 0 0 [1] 0 0 0 0 [1] 8

A somewhat odd example is the following:

0 00 0O
0 00 0O
0 00 0O

Do you understand why this is in row reduced echelon form?

EXAMPLE 3.4. We now list some matrices that are not in row reduced echelon
form.

(1) The matrix

o

0
0

2
0
0

N
O O W

HOO

o

8
0
0
(

does not satisfy condition (a).
(2) The matrix

0 [1] 6 0 5 2
0 0 0[1] 5 0
0 0 0 0 0 [1]

fails to satisfy condition (b).
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(3) The matrix
0 0
0 0
o [1] o
fails to satisfy condition (c).
(4) The matrix

N W O

=

(1] 43 0 2 0
0 00 0 0 0
0 00 [1] 5 0
0 00 0 0 [1]

fails to satisfy condition (d).

We will show in the next lecture that any matrix can be transformed into a row
reduced echelon matrix using elementary row transformations.






LECTURE 4

Row reduction algorithm

We will now see that there exists a systematic procedure, i.e. an algorithm,
that allows us to reduce any given matrix to a row reduced echelon matrix using
elementary row transformations.

Recall that the elementary row transformations are as follows:

(1) Adding a constant multiple of the j-th row to the i-th row: This is oper-
ation is written as R; + xR; or R; — R; + xR;, where x is a constant.

(2) Multiplying row ¢ by a non-zero constant: This operation is written as
zR; or R; — zR; where x is a non-zero constant.

(3) Switching the ¢-th and j-th rows: This operation is written as R; < R;.

We will not define algorithms formally. Roughly speaking, an algorithm is a
formal set of instructions that starts with some data (called as the input), performs
certain operations on the data and then produces a result (called as the output).
The instructions to perform those operations need to be concrete enough that they
can be executed by a computer. When we come up with an algorithm, we should
be able to show that it will terminate in a finite amount of time and that it will
indeed produce the desired result. We will first only present the algorithm and look
into the proof of its validity in the next lecture. Our presentation will be extremely
informal to begin with and the instructions of the algorithm will be accompanied
with a detailed commentary to explain what is happening.

INPUT: We are given an m xn matriz A with entries in R with m and n are positive
integers.

Note that the algorithm will work just as well if we are given a matrix with
entries from Q or C.

STEP 0: Set P = (.

Our strategy is to bring the given matrix into the required form one column at
a time. Within every column, we will try to create a pivot. (Recall from the last
lecture that an entry in the matrix is a pivot if it is the leftmost non-zero entry in
a row and if it is equal to 1.) While we are computing, we need to keep track of
two things - (1) which column we are working on right now, and (2) which rows
have acquired pivots. In our first draft of the algorithm, the column number being
considered will be the same as the number of the step we are executing, and so it
is easy to keep track of it. The set P will be used to remember which rows have
pivots. Once we create a pivot in row number i, we will add the integer 7 to P.
Since we have not done anything yet, P is empty.

STEP 1: There are two cases to consider in this step:

(Case 1) If all the entries of column 1 are equal to 0, go to step 1.

(Case 2) If not all the entries of column 1 are equal to 0, let the first non-zero entry
from the top occur in row j. Denote this entry by x. Perform the following
operations (in the given sequence):

— If 7 > 1, then perform the operation Ry < R;.
— Perform the operation (1/x)R;.
— Add the element 1 to P

17
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— For every integer p satisfying 1 < p < m, let ap1 denote the (p, 1)
entry. For every such p, perform the operation R, — ap1 R1.
— Go to Step 2.

Our intention in this step is to change column 1 so that it will be consistent
with the row reduced echelon form. (Case 1) just checks if there is any non-zero
term. If there is no such term, we simply move on to the next column, i.e to Step
2. Thus, the matrix looks like the following:

Notice that in this case, we do not create a pivot and so P remains empty.

In (Case 2), we the topmost non-zero element in the first column is in row i.
We shifted this element to the first row, turned it into 1 and then used it to reduce
all other elements in the first column to 0. Thus, in this case the matrix will look

like the following:
*
0 %

Thus, in this case we have created a pivot and so we added the element 1 to the set
P. Thus, in this case, the set P changes to {1}.

STEP 2: Let i be the smallest integer such that i ¢ P. There are two cases to
consider in this step:

(Case 1) For every integer | such that i <1 < m, the (I,2)-entry is equal to 0. In
this case, go to step 3.

(Case 2) If the condition in (Case 1) does not hold, let j be the smallest integer
such that i < j < m and the (j,2)-entry is non-zero. Denote this entry by
x. Perform the following operations (in the given sequence):

— If j > i, then perform the operation R; «— R;.

Perform the operation (1/x)R;.

— Add the element i to P

For every integer p satisfying 1 < p < m and p # 1, let apz denote

the (p,2) entry. For every such p, perform the operation R, — a2 R;.

— Go to Step 2.

In this step, we work on column 2. We want to create a pivot in column 2, if
possible. However, this pivot must be in a new row. Thus, we avoid all the rows
whose label is contained in the set P (the “pivoted rows”). The row immediately
after all the pivoted row is the i-th row. We look at all the entries in column 2
which occur in the i-th row or below. If none of them are non-zero, this means that
we are in (Case 1) of Step 2 and we move on to Step 3. Note that it could also
happen that the matrix has only one row which is already pivoted (i.e. i = m + 1).
In that case too, one can check that (Case 1) is valid. (Do you see why? Because
the set of all integers j satisfying m + 1 < j < m is empty! It is certainly true that
“all numbers in an empty set are equal to zero”! It sounds silly, but it is true!)

If (Case 1) is not valid, it means that there exists a non-zero entry in column 2
which does not lie in a pivoted row. Suppose this entry lies in row j. We moved it
up to column ¢ and turned it into 1. Then we used it to turn all the other entries
in column 2 into 0.
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The two cases in Step 1 and the two cases in Step 2 have given rise to four
possibilities. Can you figure out what the matrix will look like in each case?
For every integer k satisfying 2 < k < m, Step k is similar to Step 2.

STEP k: Let i be the smallest integer such that i ¢ P. There are two cases to
consider in this step:

(Case 1) For every integer | such that i <1 < m, the (I, k)-entry is equal to 0. In
this case, go to step 3.

(Case 2) If the condition in (Case 1) does not hold, let j be the smallest integer
such that ¢ < j < m and the (4, k)-entry is non-zero. Denote this entry by
x. Perform the following operations (in the given sequence):

— If j > i, then perform the operation R; < R;.

Perform the operation (1/z)R;.

— Add the element i to P

For every integer p satisfying 1 < p < m and p # 1, let a,i, denote

the (p, k) entry. For every such p, perform the operation R, — apiR;.

— Go to Step k + 1.

Once again, the idea is the same - we try to create a pivot in column k directly
below all the previously pivoted rows. If we find no non-zero entries, we simply
move on to the next column without changing the set P. If we succeed in creating
a pivot, we update the set P and then move on to the next column.

Obviously, this process has to end when we run out of columns. Thus, we have
the last step:

STEP m + 1: STOP.

OutpruT: The resulting matriz is the output of this algorithm.
Of course, we need to check that this is a row-reduced echelon matrix.

EXAMPLE 4.1. We will execute the algorithm on the following matrix:
1 -2 1 2
1 1 -1 1
1 7 =5 -1

STEP 0: Set P = (7.

STEP 1: We are in (Case 2). We observe that j = 1. Thus we do not need to switch
rows. We first perform the operation (1/1)R;. (Notice that this does nothing, but
we will do it anyway!) This gives us the matrix

1] —2 1 2

1 1 -1 1
1 7 =5 -1

and we set P = {1}.
Now we perform the operations Ry —1- R; and R3 —1- Ry to obtain the matrix

-2 1 2
0 3 -2 -1
0 9 -6 -3

(Strictly speaking, I should have performed the operations one at a time and written
two matrices.) This concludes Step 1.

STEP 1: We are in (Case 2). We observe that i =2, j =2 and x = 3. Asi = j, we
do not have to switch rows. We move on to perform the operation (1/3) - Ry. This
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gives us the matrix

and we set P = {1,2}.

4. ROW REDUCTION ALGORITHM

1] —2 1 2

0 —-2/3 —1/3

0 9 —6 -3

Finally, we perform the operation Ry —(—2)Rs an

0 1/3 4/3
0 —-2/3 —1/3

0 0 0 0

d R3—9- Rs to get the matrix

STEP 3: We are in (Case 1). So we move on to Step 4.

STEP 4: We are in (Case 1). So we move on to Step 5.

STEP 5: STOP

OutpuT: The output is the matrix

0 1/3 4/3
0 —2/3 —1/3

0 0 0 0

which is in row reduced echelon form.



LECTURE 5

Verification and applications of the row reduction
algorithm

We will now verify that the algorithm given above really gives us a row reduced
echelon matrix. Recall that a matrix is said to be in row reduced echelon form if it
satisfies the following conditions:

(a) The leftmost non-zero entry in every row is equal to 1. Such an entry is
called a pivot.

(b) If a column contains a pivot, all other entries in that column are equal to
0.

(c) If i < j are positive integers, the i-th row contains a pivot in the k;-th
column and the j-th row contains a pivot in the j-th column, then k; < k;.

(d) All the zero rows (i.e. rows filled with 0’s) occur at the bottom of the
matrix. In other words, no non-zero row occurs below a zero row.

Now let us recall the algorithm. We will write it a little more concisely than
last time.

InpuT: We are given an m xn matriz A with entries in R with m and n are positive
integers.

STEP 0: Set P = (.
For 1 < k < n, we have the following steps:

STEP k: Let ¢ be the smallest positive integer such that i ¢ P. There are two cases
to consider in this step:

(Case 1) For every integer | such that i <1 < m, the (I, k)-entry is equal to 0. In
this case, go to step 3.
(Case 2) If the condition in (Case 1) does not hold, let j be the smallest integer
such that i < j < m and the (4, k)-entry is non-zero. Denote this entry by
x. Perform the following operations (in the given sequence):
— If j > i, then perform the operation R; < R;.
— Perform the operation (1/x)R;.
Add the element i to P
For every integer p satisfying 1 < p < m and p # 1, let api, denote
the (p, k) entry. For every such p, perform the operation R, — apiR;.
Go to Step k + 1.

STEP n + 1: STOP

OutpuT: The resulting matriz is the output of this algorithm.

We will now outline an argument showing that the output of this algorithm
satisfies properties (a)-(d) listed above. The proof has not been written out formally

Verifying (a): First let us understand what needs to be verified here. For every k
satisfying 1 < k < n, if we are in (Case 2), we create a ‘1’ in the (i, k)-position.
In the previous lecture, we referred to this entry as a “pivot”. However, we never
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actually proved that this is a pivot! In other words, we need to verify at the end of
the algorithm, every entry to the left of this one is equal to 0.
For this, we have the following observation:

Observation: Let k be an integer satisfying 1 < k < n. Let i be
any integer such that 1 < ¢ < m and ¢ is not in P at the end
of Step k. Let j be any integer such that 1 < j7 < k. Then the
(4, j)-entry is equal to 0 at the end of Step k.

Observe that an integer ¢ is in P if at some point in the algorithm, we have
created a ‘1’ in the i-th row through (Case 2) of Step k for some k satisfying
1 < k < n. Since we have not actually proved that these entries are pivots, let us
temporary call such rows as “special rows”. Also recall that in Step k, we work on
the entries in column k. The above observation says that at the end of Step k, any
entry that occurs below the special rows and to the left of column & + 1 is equal to
0.

First let us verify this for Step 1. If we are in (Case 1) of Step 1, we end up
with P = & (so there are no special rows). However, in that case we know that
the first column is entirely filled with zeros. So the above observation is certainly
true in that case. If we are in (Case 2), then we end up with P = {1} at the end
of Step 1. Thus, the first row is a special row. However, we know that in that case
every term in the first column, except for the topmost term, is equal to 0. Thus,
the observation is verified for Step 1.

Now suppose that we know the observation to be true for Step 1, Step 2... and
so on till Step k. Suppose k + 1 < n. Let us verify the observation for Step k + 1.
Suppose that at the beginning of Step k + 1, we have P = {1,...,i}. Thus, the first
i rows are special and we know that any entry which occurs below the first ¢ rows
and within the first & columns is equal to 0. Suppose we are in (Case 1) of Step
k+ 1. Then that means that every entry below the first i rows and in the (k + 1)-th
column is also 0. This verifies the observation in (Case 1). If we are in (Case 2),
then at the end of Step k + 1, the (¢ + 1,k + 1)-entry is equal to 1 and all entries
below it are 0. Also, now the first ¢ + 1 rows are special (and P = {1,...,i + 1}).
It is once again clear that every entry below the first ¢ + 1 rows and within the first
k + 1 columus is equal to 0. Thus, the observation is true in (Case 2) also. Thus,
we see that the observation remains true at the end of Step k& + 1. This argument
can be repeated for the k + 2-th column and so on.

This verifies the observation for all k& satisfying 1 < k < n. (What we have
done above is an example of proof by inducion. We will not discuss the details of
that for now.)

Now, we can use this observation to verify property (a). Suppose that at the
beginning of Step [, we have P = {1,...,i} and we are in (Case 2) and we create a
‘1’ in the (i + 1,1)-position. Applying the observation with k = [ — 1, we see that
all the entries to the left of the (i 4+ 1), position are equal to 0. This shows that
the newly created ‘1’ is a pivot at the end of Step I. However, we should check
that this remains a pivot till the end of the algorithm. Suppose that 7 < l. We
want to show that the (i + 1,j)-entry remains 0 until the end of the algorithm.
However, for all later steps in the algorithm, only change row (i + 1) by adding a
constant multiple of some lower row (say, row p for p > i + 1) to the (i 4+ 1)-th row.
However, the (p, j)-entry is known to be 0 by the above observation. Thus, adding
any multiple of this to the (i + 1, j)-entry is not going to change it. Thus, we see
that the (¢ + 1, j)-entry remains 0 until the end of the algorithm. In particular, this
verifies property (a) for the output matrix.

Verifying (b): Property (b) is immediately obvious since every time we create a
pivot, we immediately change all other entries in its column to 0. Also, no further
row operations can change them back to something non-zero.
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Verifying (c): Suppose 1 < ¢ < j < m and that the i-th and j-th rows both contain
pivots. It is easy to see from the algorithm that the pivot in the j-th row was
created at a later step of the algorithm than the pivot in the i-th row. So the
column containing the pivot in the j-th row is to the right of the column containing
the pivot in the i-th row.

Verifying (d): In the algorithm, we continue to create pivots in consecutive rows
until we come to a point where we cannot find any non-zero entries below the
“special rows” (i.e. rows with pivots). Thus, all the zero rows must occur below all
the non-zero rows in the output matrix.

Thus, we have now verified that the output matrix is in row-reduced echelon
form.

Applications to solving systems of linear equations: We now return to our
original purpose in studying row reduction — solving systems of linear equations.
As we saw earlier, a system of linear equations of the form

a11X1 + a12X2 + - + alan = b1
a1 X1 + a2xXe + -+ ag, X, = b
alel + amQXQ + - aman = bm

can be represented by the augmented matrix

a11 a2 - G | b
a21 agz a2 | b2
Am1 Am2 e Amn bm

Then, we perform the row reduction algorithm on the left block of this augmented
matrix. However, the same row operations should be simultaneously performed on
the right block as well. As a result, we will end up with an augmented matrix in
which the left block is in row reduced echelon form. We then try to solve this row
reduced system of equations.

First of all, we check the equations at the bottom of the row reduced system.
If in any of the equations at the bottom, the left hand side is equal to 0, but the
right hand side is not, the system of equations cannot have any solutions.

So, now suppose that if, in any of the equations at the bottom, the left hand
side is equal to 0, then the right hand side of that equation is also equal to 0. Then,
we shift our focus to the equations in which the left hand side is non-zero.

Each column of the left block corresponds to a variable in the given system

of linear equations. Suppose X;,,X;, ..., X;, are the variables corresponding to
the columns which do not have a pivot. To construct a general solution of the
given system, we simply set X;, = t1, X;, = to,...,X;. = t, where ¢1,...,1{, can
take arbitrary values in R. Now, if X; ,..., X}, are variables corresponding to the

columns with pivots, of the X, can occur in exactly one equation each. Also, no
two of them can occur in the same equation. Thus, we can easily solve the equations
for those equations.

ExAMPLE 5.1. We will solve the system

3X:1 — 2Xo 4+ 4X3 + Xy = 11
X1 + 55Xy — X3 + 6Xy = 4
-X1 + 3Xy + 3X35 + 22Xy, = -1
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using the above method. The augmented matrix representing this system is

3 -2 4 7|11
1 5 -1 61| 4
-1 3 3 2| -1

STEP 0: Set P = (7.
STEP 1: First perform (1/3)R;.

—2/3 4/3 7/3|11/3
I 5 -1 6| 4
-1 3 3 2| -1

This has created a pivot in the first row. So we set P = {1}. Then we perform the
operations Ro + (—1)R; and Rs + R;.

—-2/3  4/3 7/3 | 11/3
0 17/3 —7/3 11/3| 1/3
0 7/3 13/3 13/3| 8/3

This concludes Step 1.
STEP 2: Perform (3/17)Rs.

-2/3  4/3  7/3 |11/3
0 —7/17 11/17 | 1/17
0 773 13/3 13/3 | 8/3

This has created a pivot in the second row. So we set P = {1,2}. Then we perform
the operations R1 + (2/3)R2 and R3 + (—7/3)Rs.

0 18/17 47/17 | 63/17

0 —7/17 1117 | 1/17

0 0 90/17 48/17 | 43/17
This concludes Step 2.

STEP 3: Perform (17/90)R;.

0 18/17 47/17 | 63/17
0 —7/17 11/17 | 1/17
0 0 8/15 | 43/90

This creates a pivot in the third row. So, we set P = {1,2,3}. Then we perform
the operations Ry + (—18/17)R3 and Rs + (7/17)Rs.

0 0 11/5 | 16/5
0 0 13/15 | 23/90
0 0 8/15 | 43/90

This concludes Step 3.

STEP 4: All the rows have pivots. So we are in (Case 1) of Step 4. Thus, we do
nothing and move on.

STEP 5: STOP.
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Thus, we now have to solve the system that is represented by the following
augmented matrix:

0 0 11/5 | 16/5
0 0 13/15 | 23/90
0 0 8/15 | 43/90

Since column 4 has no pivots, we may set X4 = t. Then the system is reduced to
X1 + (11/5)t = 16/5
Xo + (13/5)t = 23/90
Xs5 + (8/5)t = 43/90.
Thus, we have the solution set

16 11t 23 13t 43 8t
o 2T ) iteRy.
5 5'90 5°'90 5






LECTURE 6

Matrix multiplication

Notation: The set of m x n matrices with entries from R will be denoted by
My xn(R). (Similarly, we can denote the set of matrices with entries from the ra-
tional numbers, integers, etc. by My, xn(Q), Myxn(Z), etc. respectively. However,
for now, we will only work with matrices having entries from R.) If A is an m x n
matrix and the (i, j)-entry of which is a,;, we will express this briefly as

A= (ai5)1<icmi<j<n-

If the number or rows and columns of A is understood from the context, we will
simply write A := (a;;)i;-
We will discuss some basic operations on matrices.

Addition of matrices: The sum of matrices is defined only if they are of the same
shape, i.e. if they have the same number of rows and columns. Let A = (a;;); ;
and B := (b;;);; be two m x n matrices. Their sum is defined to the m x n matrix
C = (Cij)i,j where Cij = G5 + b” Example:

2 30+—12772+(—1) 3+2 0+7
-1 1 2 3 4 5| | -1+43 1+4 2+5

{1 5 7
T2 5 7
Let 0,,xn denote the m x n matrix in which every entry is equal to 0. (Again, if
the shape of the matrix is clear from the context, we may just write O instead of
Opxn.) If A = (a;5)i;, let —A denote the matrix (of the same shape) given by
—A = (—a;j)i ;- Then the following properties are easy to verify:
(i) A+ B =B+ A. (“Addition is commutative.”)
(ii) (A+ B)+C=A+ (B+C). (“Addition is associative.”)
iii)
) A

(
(iii) A+0+0+ A=A (“0is the identity for addition.)
(iv) A+ (—A) =(—A) + A =0. (“—A is the additive inverse of A.)

Matrix Multiplication:

DEFINITION 6.1. Let A = (a;;);,; be an m x n matrix and let B = (b;;); ; be an
n x p matrix. We define the product AB to be an m x p matrix C' = (¢;;);,; where

cij = aj1byj + apbyj + - + aipbp; = 2 Q;i1bg;.

Observe that the product AB of two matrices A and B is defined only if the
number of columns of A is equal to the number of rows of B. In other words, the
length of every row of A needs to be equal to the length of every column of B. If
this condition is met, the (i, j)-entry of the product is computed using the i-th row
of A and the j-th column of B.

EXAMPLE 6.2. When it comes to the matrix product, the order in which the
matrices are written is extremely important. So AB and BA mean very different
things. Indeed, while the product AB may be well-defined, the product BA may
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28 6. MATRIX MULTIPLICATION

not be defined since the number of columns of B may not be equal to the number
of rows of A. For instance, consider the following product:

2 1 11 14
0 -3 [g g] =|-15 -—18
-1 1 2 2

This product is well-defined because the number of columns in the matrix on the
left is equal to the number or rows in the matrix on the right. However, the product

3 4 2 1
5 6 0 -3
-1 1

is not defined.
Even if BA is defined, there is no reason for it to be equal to AB (except in
some very rare cases). For instance the products

and

HERE

are both defined, but they are clearly not equal since they are matrices of different
shapes.

However, even if both the products AB and BA are defined and are of the same
shape, they may still be unequal. For instance

[1 1)1 1] [2 2

0 1]|1 1] |1 1]
but

1 1] [1 1] [1 2]

1 1](0 1] |1 2]

DEFINITION 6.3. Let n be a positive integer. The n x n matrix identity matrix
I, is defined by I,, = (0;;);,; where

1 fori=j
0ij = )
0 otherwise.

In other words, this is the n x n square matrix having 1’s on the diagonal and
0’s in all other positions.

We now list some basic properties of matrix multiplication. We will only prove
the first property (which is perhaps the hardest of the lot) in detail. You may verify
the rest.

(1) Suppose A is an m xn matriz, B is a n x p matriz and C is a p X ¢ matriz.
Then A(BC) = (AB)C.

PROOF. Let A = (aij)m, B = (bij)imj and C = (Cij)z}j- We wish
to show that the matrices A(BC) and (AB)C are identical. It suffices to
show that for each pair (4, j) with 1 < i <mand 1 < j < g, the (4, j)-entry
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of A(BC) is equal to the (i, j)-entry of (AB)C.

n

(,4) — entry of A(BC) Z aix - ((k,j) — entry of BC)

P
air | D bricy

ke
M:H

k=1 =1
n [ p
= Z Z airbricy;
k=1 \i=1
= airbrici;
1<k 1 I<p

Clj

Il
1=
ol
ﬂM=
-
B
ol
=

P
= Z((z, 1) — entry of AB) - ¢,

= (i,4) — entry of (AB)C
This proves that A(BC) = (AB)C. O

(2) Suppose A is an m x n matriz and B,C are n x p matrices. Then
A(B+C)=AB+ AC.
(3) Suppose A, B are m x n matrices and C is an n x p matric Then
(A+ B)C = AC + BC.
(4) Suppose A is an m x n matriz. Then
In,A=A=A-1,.

Property (1) is usually phrased as “matrix multiplication is associative”. Prop-
erty (2) and (3) say that “matrix multiplication is distributive over matrix addition”.

Using matrix multiplication to represent matrix multiplication:
Consider the following system of linear equations:

an X1+ apXe + -+ apX, = b
a1 X1 + awXe + -+ 4+ a9, X, = b
alel + a/m2X2 + - a'man = bm

Let A denote the m x n matrix (a;;); ;. Let X denote the n x 1 matrix having X; in
the (¢, 1)-position. Let B denote the m x 1 matrix having b; in the (4, 1)-position.
Then, the above system of equation can be concisely expressed as the single matrix
equation

AX = B.

Computationally, this does not necessarily make it any easier to solve the system of
equations. However, this is a good book-keeping tool and will help us conceptually
understand the situation better in later lectures.

Row operations as matrix multiplication:

Let A = (a;j);,; be an m x n matrix and let 1 <k <m, 1 <! <m with k # L.
Let = be a real number. Let B = (b;;);,; be the matrix obtained by performing the
operation Ry + xR; on A. Recall that I,,, denotes the m x m identity matrix. Let



30 6. MATRIX MULTIPLICATION

E = (€;);,; be the matrix obtained by performing the operation Ry + zR; on I,.
Then ¢;; is given as follows:
1 fori=j
€j=sx fori=k j=1

0 otherwise.

We compute the (i, j)-entry of the product FA. Suppose i # k. Then

(i,j) —entry of EA = i €iplpj
p=1
If i # k, then €;; = 1 for and €;, = 0 for ¢ # p. Thus, we have
(,j) —entry of EA = a;;
For i = k, we have ey, = 1, €4y =  and €y, = 0 for all other values of p. Thus,
(k,j) —entry of EA =1-ax; +x - aj;.

However, by definition

(o fori # k
bij = .
ar; + xay; for i =k.
Thus, we see that FA = B.
By similar arguments, one can show that a similar result holds for the other

elementary row operations as well. So we have the result

THEOREM 6.4. Let A be an m x n matriz. Let B be the matriz obtained by
performing a certain elementary row operation on A. Let E be the matrixz obtained
by performing the same operation on I,,. Then we have

B =FA.



LECTURE 7

Invertible matrices

In the last lecture, we saw that performing an elementary row operation on a
matrix is equivalent to multiplying it on the left by a specially constructed matrix.
We will first obtain an easy generalization of this to multiple row operations.

THEOREM 7.1. Let A be an m x n matriz. Let Opy,Opo,...,Opy denote el-
ementary row operations and let B be the matrix obtained from A by performing
these operations in the given order. For everyi, 1 <1i < k, let E; denote the matrizx
obtained by performing the operation Op; on I,,. Then, we have

B=F, - E A

PROOF. Let By be the matrix obtained from A by performing the operation
Op;. For each i, 2 < i < k, let B; be the matrix obtained from B;_; by performing
the operation Op;. Thus, we see that By is the matrix obtained by performing the
operations Opy, Opa, .. .,Opy successively on A. Thus, By = B.

By Theorem 6.4, By = F1A and B; = E;B;_; for every i, 2 < i < k. Thus,

B = B, = E By
= EpFEr_1Br_2
(and so on)
— B E,A.

This proves our result. O

REMARK 7.2. It is generally not good practice to write a mathematical argu-
ment with phrases like “and so on” since they are far too vague. Strictly speaking,
an argument with such phrases would not be considered rigorous. However, this
argument can be made rigorous by using the principal of mathematical induction.
For now, this informal argument will suffice for our purposes.)

In the context of the above proof, let E be the matrix Ey - -- Ey. Thus, B = EA.
Since

E=FEy By I,

the above theorem implies that the matrix £ can be obtained by performing the
operations Opq,...,Opi on the matrix I,,. Thus, the above theorem could be
restated as follows:

THEOREM 7.3. Let A be an m x n matriz. Let Opy,Ops,...,Opy denote ele-
mentary row operations and let B be the matriz obtained from A by performing these
operations in the given order. Let E be the matriz obtained from I,, by performing
the same operations in the given order. Then, we have

B=F-A

Recall that given any matrix A, one can perform a sequence of elementary row
operations on it and transform it into a row reduced echelon matrix. Thus, the
above theorem has the following corollary:
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COROLLARY 7.4. For any A € My, «n(R), there exists a matriz E € M, xn(R)
such that EA is in row reduced echelon form. Also, E is of the form Ey - - - Ey, where
each E; can be obtained from I,, by an elementary row operation.

REMARK 7.5. One can easily prove an analogue for “column operations”. First,
of course, we need to define elementary column operations which are analogous to
the elementary operations. I will leave that as an easy exercise. Then one can prove
that if B is obtained from A by a sequence of elementary column operations, then
B = AFE where E is obtained from I,, by the same column operations. The proof
is entirely similar to the one given above.

Invertible matrices:

In the previous lecture, we saw that a system of m linear equations in n variables
and real coefficients can be represented by a single matrix equation of the form
AX = B where A is a m x n matrix with real entries, X is an n x 1 matrix with
variable entries, and B is an m x 1 matrix with real entries. If one momentarily
forgets that these are matrices, one might be tempted to divide by A on both sides
to compute the value of X. Of course, we cannot always do this since it is not
possible to “divide” by a matrix in general. However, we will now try to see when
this does make sense.

What does it mean to “divide” by a number ¢? To divide by c is the same
as multiplying by 1/¢, which is called the multiplicative inverse of c. What is the
multiplicative inverse of ¢? It is the unique number such that its product with c is
equal to 1. We will try to create an analogous concept for a matrix A. However,
we run into a small obstacle when we try to define the multiplicative inverse of a
matrix. The role of 1 is played by the identity matrix. For a matrix B to be the
multiplicative inverse of A, should we require AB to be equal to the identity matrix
or should we require BA to be equal to the identiy matrix?

The situation is further complicated by the fact that there are identity matrices
of different sizes. If A is an m X n matrix, the matrix AB can be a square matrix
only if B is an n x m matrix. In this case, AB will be an m x m matrix. Similarly,
BA can be a square matrix only if B is an n X m matrix, but in this case, BA will
be an n X n matrix. So should we require that AB = I, and BA = [,,7 As it
turns out, if m # n, there cannot exist a matrix B with such properties. (This will
become clear later in the course.) Hence, we will only focus on square matrices.

DEFINITION 7.6. Let n be a positive integer and let A € M, «,(R).

(1) A matrix B € M, «x,(R) is said to be the left inverse of A if BA = I,,.

(2) A matrix B is said to be the right inverse of A if AB = I,,.

(3) A matrix B is said to be the inverse of A if it is both the left inverse as
well as the right inverse of A. If a matrix A has an inverse, we say that it
is invertible.

Thus, a priori, it seems as if we have defined three concepts. However, we will
see that these notions are the same.

LEMMA 7.7. Suppose A € Myxn(R) has a left inverse B and a right inverse C.
Then B = C.

PROOF. By definition, we have BA = I,, and AC = I,,. Thus,
B = BI, = B(AC) = (BA)C =1,C =C.
O

LEMMA 7.8. Suppose a matriz A has a left inverse B. Then, for any matrix
Y € M,,x1(R), there exists a matrix X € My xn(R) such that AX =Y.
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PrOOF. We will prove this by contradiction. Suppose Y is such that there is
no X for which AX =Y. Suppose A = (a;;);; and Y = (y;);,1. To find an X such
that AX =Y is equivalent to finding a solution to the following system:

anXi1 + anXe + - 4+ anX, = n
an X1 + axpXe + -+ awX, = W
anlxl + an2X2 + - anan = Un

Thus, if we assume that there does not exist any such X, we conclude that the
above system has no solutions.

Let us recall how we solve systems of linear equations. We form the augmented
matrix [A]Y] and perform row operations on it to transform A into a row reduced
echelon matrix. Suppose that these operations turn the augmented matrix [A|Y]
into the augmented matrix [B|Y’] where B is in row reduced echelon form. Then,
we know that the system fails to have a solution only if B has at least one zero row
and Y’ has a non-zero entry in the corresponding row. Thus, we see that the row
reduced form of A has a zero row at the bottom.

Now consider the following system:

a1 X1 + apXe + -+ apX, = 0
an X1 + axXe + - 4+ a9, X, = 0
a1 X1+ appXo 4+ - apnXn = 0

Once again, we transform the system using the row reduction algorithm. This time,
we end up with the augmented matrix [B|0] where 0 denotes the n x 1 matrix in
which every entry is equal to 0. Clearly, this system always has a solution. Moreover,
note that B has at most n — 1 pivots. Since it has n columns, it follows there exists
a column which does not have a pivot. The variable corresponding to this column
can take arbitrary values (i.e. it is a free variable). Thus, we see that there exists
an n X 1 matrix K such that K # 0, but AK = 0.
However, now observe that

K =I,K = (BA)K = B(AK) = BO = 0.

This is a contradiction since we know that K s 0. This shows that our initial
assumption, that there exists no X for which AX =Y, must be wrong. This proves
the lemma. O

LEMMA 7.9. Let J € M,xn(R) be such that for any X € M,«1(R), we have
JX = X. Then J = I,.

PROOF. Let F; € M,x1(R) be the matrix having 1 in the i-th row and 0
elsewhere. Then it is easy to check that JE; is equal to the i-th column of J (check
this!). By assumption, JE; = E;. Thus, F; is the i-th column of J for every i. This
shows that J = I,,. O

PROPOSITION 7.10. Suppose A € M,x,(R) has a left inverse B. Then B is
also a right inverse for A.

PROOF. Choose any Y € M,x1(R). By Lemma 7.8, there exists an X €
M, «1(R) such that AX =Y. Since BA = I,,, we have

X =I1,X = (BA)X = BY.

Thus,
(AB)YY = A(BY)=AX =Y.
By Lemma 7.9, we see that AB = I,,. a
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COROLLARY 7.11. Suppose A € My, (R) has a right inverse B. Then B is
also a left inverse for A.

PROOF. Since AB = I,,, A is a left inverse for B. Thus, by Proposition 7.10,
A is also a right inverse for B. Hence BA = I,,. |

This shows that for square matrices, the notions of left inverse, right inverse and
inverse are all equivalent. (Please note that this only happens for square matrices!)
Now let us note some basic properties of inverses.

LEMMA 7.12. Let A € My,xn(R) and let By and By be inverses of A. Then
B = Bs.

Proor. B; = 1,,B; = (BQA)Bl = BQ(ABl) = Bs1,, = Bs. O

Thus, if a matrix has an inverse, it is unique. This justifies the following
notation:

NOTATION 7.13. Let A € My, x,(R). If the inverse of A exists, it will be denoted
by A1

LEMMA 7.14. Suppose A and B are invertible matrices. Then AB is also in-
vertible and (AB)~! = B~tA~ L.

PrOOF. (B~'A=1)(AB) = B-Y(AA"Y)B = B-'I,B = BB~' = I,,. O

LEMMA 7.15. Let E be a matrix obtained from I, by performing an elementary
row operation. Then E is an invertible matriz.

PROOF. Suppose E is obtained from I,, by performing a certain elementary
row operation Op;. Recall that the elementary row operations are reversible. Thus,
there exists an elementary row operation Opy such that if Op; and Opy are both
performed on a matrix, the matrix remains unchanged. Let E’ by the matrix
obtained by applying Ops on I,,. Thus, we see that for any matrix A (which has
n rows), we have FE'A = A. In particular, taking A = I,,, we see that EE' = I,.
Thus, F is invertible. (]

LEMMA 7.16. Let A € My« (R) be a row reduced echelon matrix. Then the
following two conditions are equivalent:
(1) A=1,.
(2) A has no zero rows.

PRrROOF. Clearly, if A = I,,, it has no zero rows. Thus, (1) = (2).

Suppose A has no zero rows. Then every row has a pivot. Thus, the number
of pivots is equal to n. Thus every column also has a pivot. The only n x n row
reduced echeleon matrix having a pivot in every row and every column is I,,. (Do
you see why?) O

THEOREM 7.17. Let A € M,,»,(R) and let B be the row reduced echelon matriz
obtained from A by a sequence of elementary row operations. Then A is invertible
if and only if B = I,,.

PROOF. We saw in Corollary 7.4 that B is of the form FA for some F =
FEy --- B, where each F; has been obtained from I,, by an elementary row operation.
By Lemma 7.15, we know that each Fj is invertible. By Lemma 7.14, E is invertible.

First suppose that B = I,,. Then A = EB = EI, = E, which is invertible.
This proves one half of our theorem.

On the other hand, suppose A is invertible. Then if B # I, by Lemma 7.16,
B must have a zero row. By the definition of matrix product, for any matrix C,
the matrix BC' must have a zero row. Thus BC # I,. Thus B is not invertible.
However, as we saw above, B = EA where E is invertible. As A is assumed to be
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invertible, Lemma 7.14 implies that B is also invertible. This is a contradiction.
Thus, B = I,,. This completes the proof of the theorem. O

This gives us an algorithm to check whether a given matrix is invertible and
also to compute its inverse if it exists. Indeed, given any A € M,,»,(R) we use the
row reduction algorithm to transform it into a row reduced echelon matrix B. If
B # I,, we may conclude that A is not invertible. If B = I, we look at the list
of elementary row operations which were used to transform A into I,, and perform
them in the same order on I,,. If I, is transformed into B by these operations, it
follows that B = A~






LECTURE 8

Determinants

Note: The notes for this lecture are somewhat demanding and contain far more
details than were presented in the lecture. However, you may choose to ignore the
proofs for now if they seem too long and demanding. You may simply focus on
understanding the definitions and the statements of the results.

For any square matrix with entries in R, we can associate a real number which is
called the determinant of a matrix. Thus, for any positive integer n, the determinant
is a function from M, «,(R) to R. This function has some important properties,
which we will now explore. However, the proofs of these properties will involve a
technique called the principle of mathematical induction. If you are not familiar
with the technique of mathematical induction, you may review the appendix at the
end of this lecture.

There are many ways to define determinants. We will choose to define them by
a formula. The formula for the determinant of the n x n matrix is given in terms
of the determinant of the (n — 1) x (n — 1) matrix. Thus, the definition is inductive
in nature.

DEFINITION 8.1. Let n = 1 be an integer. Let A € M,,«,(R). We define the
determinant of A, denoted by det(A) as follows:
(1) Suppose n = 1. Then A = [a] for some a € R. In this case, we define
det(A) = a.
(2) Suppose that determinants have been defined for (n—1) x (n—1) matrices.
For the given matrix A = (a;;);; for any pair of indices i,j satisfying
1 <i,j <mn,let A;; denote the (n — 1) x (n — 1) matrix obtained by
deleting the i-th row and j-th column of A. Then, we define

det(A) = a1 det(All) — a12 det(Alg) + -+ (_1)n—1 det(Aln)
= Z(—l)i_lau det(Ay;).
i=1

Given a matrix A, any matrix obtained by deleting some of its rows and columns
is said to be a minor of A. Hence, the above formula is called the formula for
expansion by minors. We have used terms in the first row and the minors obtained
by deleting the row and column containing each of those terms. Hence, we say
that this is the formula for expansion of the determinant by the first row. One can
also write down the formula for expansion by any of the other rows or even by
any column of the matrix. We will look into this later. For now, the formula for
expansion by the first row is our definition of the determinant.

ExaMmpPLES 8.2. We will interpret the formula for small values of n.

(1) For n = 1, there is not much to see: det([a]) = a.

(2) Lot A — [“ b

. d] be a 2 x 2 matrix. Then, by definition

det(A) = a - det([d]) — b - det([¢])
= ad — bc.

37
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(3) Now let us look at the case n = 3.

a1 a2 G13
A= |an ax az
a31 as2 ass3

By definition

det(A) = ay; det @22 G23 — ajo det 021 023 + a3 det @21 022
aga  G33 as1 ass3 asy a3z

= a11(a22a33 - a23a32) - a12(11216l33 - 0231131) + 1113(a21a32 - a22a31).

Before we state the basic properties of the determinant, let us observe something
about the formula. First let us count the number of terms in the expansion. Suppose
that the number of terms in the expansion of the n x n determinant is f(n). The
number of terms in the expansion of A is equal to the sum of the number of terms
in the expansion of A1y, Aja, ..., A1,. Thus, we see that f(n) =n- f(n—1). Using
the principle of induction, one can prove from this that

f(n)=1x2x3x--xmn.

This number is denoted by n! (read as “n factorial”).

Secondly, observe that each of the n! terms is a product of entries of the matrix.
How many entries appear in each product? The number of entries appearing in the
terms in the expansion of A is exactly one more than the number of entries appearing
in the expansions of Ai1, A1o, etc. Thus, using the principle of induction, we may
verify that each of the n! terms in the expansion of the determinant of an n x n
matrix is the product of exactly n terms.

Our third observation is a little more interesting. In each of the n! terms, there
is exactly one term from each row and exactly one term from each column. You can
verify this easily using induction. As an example, look at the two terms appearing
in the expansion of the 2 x 2 matrix. The first term is aj1a22. Here a1, appears
in the first row and aso appears in the second row. Also aq; appears in the first
column and aso appears in the second column. Thus, the first term certainly has
the above-mentioned property. You can also easily verify this for the term aizao;.

We summarize our observations:

(Ob1) The expansion of the determinant of an n x n matrix has exactly n! terms.

(Ob2) Each of the n! terms is a product of exactly n entries of the matrix.

(Ob3) Each term has exactly one entry from each row and exactly one entry from
each column.

We will now derive some basic properties of determinants. The proofs of some
of these statements are deliberately a little sketchy. While they are essentially
complete, I have avoided writing everything in complete detail since it will make
the topic seem too burdensome. However, if you are interested, you should be able
to write complete versions of the proofs based on what is written below.

LEMMA 8.3. det([,) = 1.

PROOF. This is an easy consequence of the definition. To prove it rigorously,
one may use induction on n. I will leave this as an exercise. (|

LEMMA 8.4. Let A€ My xn(R) and let B be the matriz obtained by multiplying
one of the rows or one of the columns of A by some x € R. Then det(B) = xdet(A).

PRrROOF. This follows from (Ob3). O

Notice that this tells us that if any single row or column of a matrix has only
zero entries, the determinant of the matrix is equal to 0.
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LEMMA 8.5. Suppose B and C' are two n X n matrices. Let 1 < 1 < n and
suppose that for any j # i, the j-th rows of B and C' is identical. Suppose that A
is the n x n matriz such that:

(1) for every j # i, the j-th row of A is equal to the j-th row of B (and hence
also of C), and

(2) the i-th row of A is equal to the (term by term) sum of the i-th rows of B
and C'.

Then det(A) = det(B) + det(C).

For the sake of clarity, let us write down an example with 3 x 3 matrices.
Suppose

aix aiz2 ais
B = |{by ba b],
a31 as2 ass3

ailx a2 aig
C=|ca ca2 c23
as; as2 ass

and
aii a12 a3
A= |by +co1 bao+caa ba3z+ a3
asi asz ass

Then, the lemma says that det(A) = det(B) + det(C).

PrOOF. This lemma too follows from (Ob2). Indeed, suppose that in the ex-
pansion of the determinant of A, there exists a term that contains the (i, j)-entry
of A. Note that this term cannot contain any other entry from the i-th row or j-th
column. Thus, this entry looks like (b;; 4 ¢;;) where z is a product of entries which
do not lie in the i-th row or j-th column. But then for any j # ¢, the j-th rows of
A, B and C are identical. Thus, the terms zb;; and zc;; occur in the expansions of
the determinants of B and C respectively. The equality det(A) = det(B) + det(C)
can be proved by matching the terms on both sides in this manner. O

The analogous statement for columns is also true and the proof is identical.
Lemmas 8.4 and 8.5 are expressed by saying that “the determinant is linear in the
rows of the matrix”. The word “linear” refers to the fact that the entries from every
row only occur with degree 1 in each term in the expansion of the product (which
is the fact which was crucially used in the proofs of these lemmas).

We now wish to prove that if two rows of the matrix are switched, the determi-
nant changes sign (i.e. it gets multiplied by (—1)). The proof of this fact is a little
harder and so we will go about it in steps. Let us fix two indices 7 and j, satisfying
1<i,j <nandi# j. Consider the following two statements:

(Altl) If the matrix B is obtained from the matrix A by interchanging the i-th
and j-the rows, then det(A4) = — det(B).
(Alt2) If the i-th and j-th rows of a matrix A are identical, then det(A) = 0.
We will observe that these two statements are equivalent, i.e. they imply each

other. To show this, let us write the matrices as columns in which the entries are
actually rows of the matrix. Thus, the matrix A is written as

Ry
R
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where R; is the row (a1, ..., ain). Let us show the equivalence of (Altl) and (Alt2)
assuming ¢ = 1 and j = 2 (the proof of the general case is absolutely identical).
The proof of (Altl) = (Alt2) is very easy. Indeed, let us assume (Altl) and
suppose that the first and second rows of A are identical and that B is obtained
by interchanging them. Then B = A, but (Altl) implies that det(A4) = — det(B).
Thus, det(A) = — det(A) which implies that det(A) = 0.
Now assume (Alt2). Then let C be the following matrix:

R+ Ry
R+ Ry
RTL
By Lemma 8.5, we see that
[ R Ry
R+ Ry Ry + Ry
det(C) = det . + .
R, R,
Again, by Lemma 8.5,
R | R, R
Ri + Ro Ry Rs
det . =det | . + det
R, R, R,

Here, the first term is equal to 0 since we are assuming (Alt2). Thus,

Ry

Ry + Ry

det = det(A4).

By a similar argument

det = det(B).

R,
Thus, det(C) = det(A) + det(B). However, since C has two identical rows, we know
that det(C') = 0. Thus det(A) = —det(B). Thus, we see that (Alt2) implies (Alt1).

Thus, it will suffice to prove (Alt2) for any pair of indices (i, 7). To begin with,
we prove it for adjacent pairs, i.e pairs of the form (4,7 + 1).

LEMMA 8.6. If two adjacent rows of an n x n matriz A are identical, then

det(A) = 0.

PROOF. This statement is proved by induction on n. The statement does not
have much relevance to the case n = 1, and so we look at the case n = 2. It is
easy to verify by explicit calculation that if a 2 x 2 matrix has identical rows, its
determinant is equal to 0.

Now suppose that the result is known for (n — 1) x (n — 1) matrices. Suppose
that the i-th and (i+1)-th rows are identical. If ¢ > 1, this immediately implies that
in the matrices Ay;, two adjacent rows are identical. Then, the induction hypothesis
says that det(A;;) = 0 for every ¢ and so det(A4) = 0.
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Suppose that the first and second rows are identical. For any pair i, j satisfying
1<i,j<nandi# j,let B;; denote the (n—2) x (n—2) minor obtained by deleting
the rows 1 and 2 and the columns ¢ and j of A. Then, the expansion of ay; det(41;)
contains the term as;a9; det(B;;) and the expansion of a;; det(A;; contains the term
a1;a2; det(B;;). But as the first two rows are assumed to be identical, we see that
a1; = A9 and a1 = a2j. Thus, the terms a1;A25 det(Bl]) and 15424 det(BU) are
identical. If one can check that they come with opposite signs, it will follow that
they cancel each other out. I will leave this as an interesting exercise. (Drawing a
picture of the matrix may help you figure this out.) In this manner, one can show
that all the terms cancel out and so det(A) = 0. O

As we have already proved that (Alt2) implies (Altl) for any pair of indices,
we have also obtained the following lemma:

LEMMA 8.7. Let A be an n x n matriz and suppose B is obtained from A by
switching two adjacent rows. Then det(A) = —det(B).

Now, suppose we want to switch two non-adjacent rows. This can be achieved
by successively switching adjacent pairs. For instance, suppose a matrix has three
rows and I want to switch the first and the third row. This can be achieved by
switching in the following manner.

R1 R2 RQ RS
Ry | wo | Ry | v |R3| vo | Ry
R3 Rg R1 Rl

Observe that this required an odd number of adjacent row switches. For each switch
the sign of the determinant changed once. Thus, we finally end up with a minus
sign.

Suppose we wish to switch the i-th row and the j-th row with ¢ < j. We start
by switching the i-th row with the (i + 1)-th row and keep switching it forward until
it gets to the j-place. This requires (j — i) adjacent row switches. At this point,
the j-th row will be in the (j — 1)-th place. Thus, to move it to the i-th place will
require (j — 1 — i) adjacent row switches. Thus, we need a total of 2(j — 1) — 1
adjacent row switches to switch the i-th and j-th row. As this is an odd number,
we finally end up with a minus sign. This shows that

LEMMA 8.8. Let A be an n x n matriz and suppose B is obtained from A by
switching any two rows. Then det(A) = — det(B).

As we have observed, (Altl) implies (Alt2) for any pair of indices. Thus, we
also obtain

LEMMA 8.9. If any two rows of an nxn matriz A are identical, then det(A) = 0.

Observe that we have seen what two of the elementary row operations do to
the determinant of a matrix. Now let us look at the last remaining operation:

LEMMA 8.10. Let A be an m x m matriz and let B by obtained from A by
performing the operation R; + xR; for some x € R. Then det(B) = det(A).

PrOOF. We will write the proof for ¢ = 1 and j = 2. The proof in the general
case is entirely identical. As before, we write the matrices as columns in which the
entries are the rows of the matrices.

R+ xRy
Ry
B = .

Ry,
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Now we use Lemma 8.5 to obtain the following equality:

Ri+ xRy Ry TRo TRy
Ry Ry Ry Ry
det . =det| . | +det| . | =det(A)+det

Now, observe that by Lemma 8.4, we have

TRy Ry
Ry Ry
det . =z -det
R, R,
which is equal to 0 by Lemma 8.9. ([

Thus, we now know how various row operations affect the determinant:

(1) Adding a constant multiple of a row to another leaves the determinant
unchanged.
(2) Multplying one of the row by a constant x has the effect of multiplying
the determinant by z. (This works even if z = 0.)
(3) Switching two rows has the effect of multiplying the determinant by —1.
Note that we have observed the analogue of (2) for columns as well. Actually
the analogues of (1) and (2) also hold for columns, as we will see later.

8.A. Mathematical Induction

Suppose we want to prove the following statement:
For any positive integer n, the sum of all integers i satisfying
1<i<nisn(n+1)/2.
Since this is a statement about the integer n, we call this statement P(n). Let us
see how we could prove this statement. We observe that
142+ +n=01+2+---+(n—-1) +n.

Suppose we assume that P(n—1) is true. In other words, suppose we already know
that

1+2+--+(n—1)= (TL—l)(?;—l—i—l) :n(nz—l).

Then,
n(n—1)+n:n(n—1+1) _ n(n-l—l).

2 2
Note that this is not a proof of the statement P(n) yet. We have only proved that
if the statement P(n — 1) is true, then the statement P(n) is also true.

So, suppose I want to check whether P(5) is true. The above argument tells
me that it would be enough to verify P(4). But then to verify P(4), it would be
enough to very P(3). To verify P(3) it would be enough to verify P(2). To verify
P(2) it would be enough to verify P(1). But P(1) is very easy to verify. Indeed, it
just says that 1 = 1, which is evidently true. Thus, we conclude that P(5) is true.

Intuitively, it is clear that this method can be applied to prove P(n) for any n.
For instance, if I want to prove P(100), I would have to write the following;:

To verify P(100), it is enough to verify P(99). To verify P(99), it is enough to
verify P(98). ... (and so on, through all integers between 100 and 1) ... To verify
P(2) it is enough to verify P(1). But P(1) states 1 = 1, which is evidently true.

The argument will get longer as we try to prove P(n) for larger and larger
numbers, but the method of proof is quite clear and it is “obvious” that it will

1424 4+n=(1+2+---+(n—1))+n =
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work. However, one must admit that as a written proof, it is not rigorous. The
phrase ”and so on” might be enough to convince you of the validity of the argument,
but it does not represent a complete argument.

Mathematical induction is a principle that allows us to make this rigorous. The
principle can be stated as follows:

Mathematical Induction: Let S(n) be a statement about the in-
teger n. Suppose that the statement S(ko) is known to be true
for an integer ky. Suppose it is also known that for any k > kg,
the statement S(k) implies the statement S(k + 1). Then, the
statement S(n) is true for all integers n > ko.

Clearly, if we accept this principle as rigorous, the above argument with the
phrase “and so on” can be rewritten in a rigorous form. This principle is a fun-
damental property of the integers. A discussion of why this principle should be
accepted would lead us into the question of what the integers really are. We will
not treat this issue in this course. We will simply accept this principle as a fact and
use it in our proofs. As an example, we prove the following rigorously:

THEOREM. For any positive integer n, the sum of all integers i satisfying 1 <
i<nisn(n+1)/2.

ProOOF. We will prove this using the principle of mathematical induction. We
first verify this statement for n = 1. In this case, we wish to prove that 1 = 1,
which is certainly true.

Suppose the result is known for n = k. We wish to prove it for n = k + 1. So,
we may assume that

1+ +(n—1)= (n—1((rn—1)+1) :n(n—l)'

2 2
Then ) )
— +
1+~--+(n—1)+n=n(n2 )+1=n(n2 ),
This completes the proof of the inductive step. Thus, the principle of mathematical
induction imples that the statement is true for all integers > 1. |

Proofs involving induction should be written in this format:

(1) Check the statement for the initial integer ko (which is equal to 1 in the
above example).

(2) Check that if the statement is true for an integer k = ko, then it is true
for the integer k + 1. (Note that it is very important that this part of the
argument works for k = kg, and not just k > kg. Otherwise, we have no
way to deduce the statement for ko + 1.)

Part (2) of the argument is referred to as the inductive step. The assumption that
the statement is true for the integer k is referred to as the inductive hypothesis.






LECTURE 9

Further properties of determinants

We begin by recalling some facts we have established so far. Then we will put
them together to obtain the proofs for two of the most important properties of
determinants.

Let n be a positive integer. Then, we know the following facts about n x n
matrices.

Facts:

(a) Let A and B be n x n matrices.

(i) If B is obtained from A by performing an operation of the form
R; + zR; for some z € R, then det(A) = det(B).

(ii) If B is obtained from A by performing an operation of the form zR;
for z € R, then det(B) = xdet(A4). (Note that generally when we
refer to elementary row operations, we require that x # 0, but this
particular result holds even if we take x = 0.)

(iii) If B is obtained from A by performing an operation of the form
R; < Rj, then det(B) = —det(A).

(b) det(l,) = 1.

(¢) Any matrix can be reduced to a matrix in row reduced echelon form us-
ing the row reduction algorithm (i.e. by a sequence of elementary row
transformations).

(d) A matrix is invertible if and only if it is transformed into the identity
matrix by the row reduction algorithm. If it is not invertible, its row
reduced echelon form has a zero row.

(e) If a matrix B is obtained from a matrix A by performing an elementary
row operation, and if FE is the matrix obtained from I,, after performing
the same row operation, then B = FA.

LEMMA 9.1. Let A be a square matriz and let B be a matriz obtained from A
by performing an elementary row operation. Then det(B) is a non-zero multiple of
det(A). In other words, there exists a non-zero real number a such that det(B) =

a - det(A).

PRrROOF. By Fact (a), part (i), if B is obtained from A by the operation R; +zR;
for some x € R, then det(B) = det(A). Thus, in this case we obtain the result with
a=1

If B is obtained from A by the operation xR; for some x € R, x # 0, then by
Fact (a), part (ii), det(B) = x det(A). Thus, in this case, we obtain the result with
a=z#0.

Finally, if B is obtained from A by an operation of the form R; < R;, then
det(B) = — det(A). Thus, we obtain the result with o = —1.

Thus, we have verified the result for all the elementary row operations. O

We are now able to put together all these results to deduce an important crite-
rion for invertibility of matrices.

THEOREM 9.2. A square matrixz is invertible if and only if its determinant is
non-zero.
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PROOF. Let A be a given n x n matrix. By Fact (c), we know that there exist
finitely many elementary row operations, which we denote by Opy,...,Opy such
that performing them sucessively on A transforms it into a row reduced echelon
matrix B. We will show that det(A) is non-zero if and only if det(B) is non-zero.

Suppose that Bj is the matrix obtained from A by performing Op;. For each
1 satisfying 2 < ¢ < k, let B; be the matrix obtained by performing Op; on the
matrix B;_;. We will prove by induction that for each i satisfying 1 < i < n, there
exists a real number «; # 0 such that det(B;) = a; det(A).

For i = 1, By is obtained from A by performing a single elementary row
operation. Thus, Lemma 9.1 shows that there exists some a; # 0 such that
det(Bl) = 1 det(A)

Suppose that ¢ > 1 and it is know that det(B;) = «o; det(A4). Then, Lemma 9.1
implies that there exists a real number 3,1 0 such that det(B; 1) = B;+1 det(B;).
Thus,

det(Bi+1) = 57;+1 det(BZ) = ﬂiJrlai det(A)
Thus, if we define a; 11 = B;11¢;, then we obtain the equality
det(BiH) = 041 det(A)

This completes the inductive step and proves our claim. (Observe that here induc-
tion has been used to prove something about a finite set of integers rather than the
entire set of integers.)

Thus, in particular, taking ¢ = k, we see that det(B) = ay det(A4) for some
ag # 0. Thus, it follows that det(B) is non-zero if and only if det(A) is non-zero.

We know that det(A) is invertible if and only if B = I,,, in which case det(B) =
1#0. If B+# I, it has a zero row and hence det(B) = 0. This completes the
proof. O

LEMMA 9.3. Let A be an n x n matriz and let E be a matriz obtained by
performing an elementary row operation on I,. Then det(EA) = det(E) - det(A).

PRrROOF. This is an immediate consequence of Fact (a). Indeed, the essence of
the argument is already present in the proof of Lemma 9.1. We write the argument
in detail for the sake of completeness. Let B = FA. Then B is obtained from A by
the same operation that was performed on I,, to obtain E.

If E is obtained from I,, by performing the operation R; + 2R;, then det(E) =
det(I,) = 1. Similarly, performing this operation on A, we get det(B) = det(A).
Thus, det(B) = det(F) - det(A) in this case.

If E is obtained from I,, by performing the operation xR; for some =z # 0,
then det(E) = zdet(l,) = z. Similarly, performing this operation on A, we get
det(B) = x det(A). Thus, det(B) = det(E) - det(A) in this case.

If E is obtained from I,, by performing the operation R; < R;, then det(EF) =

—det(I,) = —1. Similarly, performing this operation on A, we get det(B) =
—det(A) = (—1) - det(A). Thus, det(B) = det(E) - det(A) in this case.
Thus, we have verified the result for all the elementary row operations. O

THEOREM 9.4. Let A and B be nxn matrices. Then det(AB) = det(A)-det(B).

PROOF. If A is invertible, then we can write A = E; - - - E}, where each E; is ob-
tained from I,, by performing some elementary row operation. Then, by repeatedly
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using Lemma 9.3, we get
det(AB) = det(E, - -- Ey - B)
= det(F;) - det(Ey - - E) - B)
= det(F1) - det(Esq) - det(Es3 - -- Ey - B)
(and so on)
=det(E) - - det(Ey)B.
(Exercise: Can you write the above argument rigorously, i.e. avoiding the phrase
“and so on”, by using induction?)
Actually, if we apply the above argument for B = I,,, we get
det(A) = det(Eq) - - - det(Ey).
Thus, we see that for any matrix B,
det(AB) = det(F1) - - - det(Ey) - det(B) = det(A) - det(B)

if A is invertible.

If A is not invertible, let C denote its row reduced echelon form. Then, there
exist matrices Fjq,...E) such that each E; is obtained from I,, by an elementary
row operation and such that A = Ey--- Ey - C. Then

AB =FE,---E; - (CB).

As C is a square matrix in row reduced echelon form and it is not equal to the
identity matrix, it must have a zero row. Thus, C'B also has a zero row and so
det(CB) = 0. As the matrix F - - - Ej is invertible, the first part of the proof shows
that

det(AB) = det(E; - -- Ey) - det(CB) = 0.
On the other hand, as A is not invertible, we also have det(A) = 0. Thus, in this
case also, we have det(AB) = det(A) - det(B). This completes the proof. O






LECTURE 10

Cramer’s rule

In this lecture, we will see how determinants can be used to obtain a formula
for the inverse of a square matrix. As a consequence, we will be able to deduce the
well-known Cramer’s rule for solving systems of n-linear equations in n unknowns.
However, first we need to deal with a couple of preliminary topics.

Transposes:

Given an m x n matrix A, we can form an n x m matrix called the transpose of
A, denoted by A'", by just interchanging the rows and columns of A. Another way
of saying this is that we reflect A along the diagonal line that begins at the top left
corner. A precise way of saying this might be to write that if A = (a;5);; (i.e. if
the (i, j)-entry of A is a;;), then A" = (aj;); ; (i.e the (i, j)-entry of A" is aj;).

ExaMpPLE 10.1. Some examples of transposes:

1 4
A:[igg] A= |2 5
3.6
1
B=[1 8 7] B = |8
7
1 23 14 -1
C=|4 5 2 C"=1|2 5 4
-1 41 3.2 1

It is important to know how this operation behaves with respect to multiplica-
tion (see part (b) in the following lemma).

LEMMA 10.2. Let A€ Myxn(R) and B € Myx,(R). Then:

(a) (AM)Ir = A.
(b) AB = B A",

PROOF. Part (a) follows immediately from the definition. The proof of part
(b) is left as an easy exercise. O

LEMMA 10.3. Let E be a matrix obtained from I,, by an elementary row oper-
ation. Then det(E) = det(E').

PROOF. Suppose E is obtained from I,, by the operation R; + xR;. Then E
has 1’s on the diagonal, = in the (i,j)-position and 0’s elsewhere. Thus, E*" has
1’s on the diagonal, 2 in the (j,4)-position, and 0’s elsewhere. Thus, E'" can be
obtained from I,, by the operation R; + zR;. In this case, we have det(E) = 1 and
det(E') = 1, which verifies the result for this particular row operation.

The verification for the other two row operations is left as an easy exercise. [

PROPOSITION 10.4. Let A be a square matriz. Then det(A) = det(A™).

49
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PROOF. Suppose that A is an invertible matrix. Then A = FEj --- E} where
each E; has been obtained from I,, by an elementary row operation. By Lemmma
10.2, A" = det(E}" - -+ E{"). Thus,

det(A™) = det(EL" - - - det(EL")
= det(Ey) - - - det(E)
= det(A).

Here, we used Lemma 10.3 to deduce that det(E!") = det(FE;) for every i.

Suppose A is not invertible. Then its row reduced echelon form B has a zero
row and so det(B) = 0. As above, we can write A = Ej ... E}, B where each E; has
been obtained from I,, by an elementary row operation. Then A" = B"E!"... B
Thus,

det(A") = det(EL" - -- Ei") det(B").
As B has a zero row, B'" has a zero column. Thus, det(B'") = 0. (Recall that this
is because every term in the expansion of a determinant has exactly one entry from
each column as a factor.) Thus det(A") = 0. As A is not invertible, we know that
det(A) = 0. Thus, we have verified the result even when A is not invertible. O

Formula for the inverse of a matrix:

Let A = (a;j);,; be an n x n matrix. As before, let A;; denote the matrix
obtained by deleting the i-th row and j-th column of A. For any two indices 1, j,
let

Cij = (—1)i+j det Al]

The matrix C' = (¢;5);,; (having the number ¢;; in the (4, j)-position) is called
the cofactor matriz of A. Let us look at an example. The number ¢;; is called the
(i, j)-cofactor of the matrix A.

ExAMPLE 10.5.

3 4 -1
A=12 1 3
1 -1 0
Then,
c11 = (1) det [_11 g] =3,
Ci2 = ( 1)1+2d t |:% g] = 3,
C13 = (71)1+3d t [? _11] = *3,
Co1 = ( 1)2+1 det |:_41 01] = ].,
Coo = (—1)2+2d t |:i} 01:| = 1,
Co3 = ( 1)2+3d t [i) _41] = 7,
ez = (—1)3 det [‘11 _31} =13,
C3o = ( 1)3+2d t [; _31:| = —11,
and



10. CRAMER’S RULE 51

Thus, the cofactor matrix is

3 3 =3
c=11 1 7
13 —-11 -5

We need one further definition before we can use the above concept to state an
important theorem.

DEFINITION 10.6. Let A = (a;;);; be an m x n matrix. Then, for any c € R,
cA denotes the matrix (ca;j);, ;-

In other words, cA is the matrix obtained by multiplying every entry of A by
the constant c.
We will prove the following theorem in a later lecture:

THEOREM 10.7. Let A be an n X n matrix and let C be its cofactor matriz.
Then AC' = C' A = det(A) - I,.

The matrix C' is called the adjugate matriz of A.
This immediately gives us the following formula for the inverse of square in-
vertible matrix:

COROLLARY 10.8. Let A € M,x,(R) be an invertible matriz and let C be its
cofactor matriz. Then A~! = det(A)~!.C .

PROOF. Suppose D = det(A)~!-C. Then,
DA = det(A)™! - (CA) = det(A)~! - det(A) - I,, = I,,.
This shows that D = A1, O
ExaMpPLE 10.9. We apply this formula for a general 2 x 2 matrix. Suppose
a b
A= [ d] .

Then, the matrix of cofactors is

Thus, the inverse of A is given by the following formula:

d )
A" = | ad=bc  ad—bc
—c a
ad—bc ad—be

Cramer’s rule:

As we have seen before, a system of n linear equations in n variables can be
written in the form AX = B where A is an n X n square matrix with entries from
R, X is an n x 1 matrix with variable entries and B is an n x 1 matrix with entries
from R. Then, if A is invertible, the solution of the system is given by X = A~ B.
This allows us to deduce the following formula for the solutions of such a system.
We will only look at the formula for now and postpone the proof to a later lecture.

THEOREM 10.10 (Cramer’s rule). Consider the following system of linear equa-
tions

a1 X1 + apXe + - 4+ a1 X, = b
a1 X1 + anXs + - 4+ aX, = b
aanl + an2X2 + e anan bn
where all a;; and all b; are constants and X1, ..., X, are variables. Let A = (ai;)i,;

and for every i satisfying 1 < i < n, let A; denote the square matrixz obtained from A
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by substituting the column matriz [by, ..., b, in place of the i-th column of A. If A
is invertible, the above system has a unique solution given by X; = det(A4;)/det(A)
for every i.
ExXAMPLE 10.11. Consider the following system:
X1+3Xs =1
2X;—Xo=5

We compute the determinant of the matrix of coefficients

1 3
det [2 _1] =7

and find that it is not equal to zero. Thus, this matrix is invertible and so Cramer’s
rule may be applied. Then the solution is given by

fim (L)l 3]
Gom (L) ! ]
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Proof of Cramer’s rule

We defined the determinant of a matrix using the formula for expansion by
the first row. We will now show that it is possible to compute the determinant by
expanding by any row or column. Indeed, suppose that in a 3 x 3 determinant, I
want to expand the determinant by the third row. Then, we can use row operations
to shift the third row to the top and then use our formula for expansion by the first
row. Let us try this out.

Suppose we have the following matrix:

ail aiz2 ais
A= |an ax azs
a31 as2 ass3

We want to expand by the third row, and so we bring the third row to the top to
get a new matrix. We do this by the operation R; < Rj3.

azip asz2 ass
B = laxn a2 az
ail a2 a3
Then, we know that det(B) = —det(A). Thus, it will suffice to compute det(B).
We use our formula for expansion by the first row.

G2 A23 a1 a3 a1 Aa22
det(B) = a3 det — aszg det + a3z det
(B) 3 [au 013] 52 [au a13] 5 [011 a12:|

This formula is a little inconvenient because the 2 x 2 matrix obtained by deleting
the row and column containing as; in C' is a bit different from the 2 x 2 matrix
obtained by deleting it in A. To fix this problem, we would need to work with the
following matrix:

asz; a3z ass

C= a1 a2 a3

Gz1 Q22 a23
This matrix can be obtained from A by performing the operations R3 < R followed
by Rz <> Ry. Thus, det(C) = det(A). We use our formula on this matrix.

a a a a a a
det(C) = ag det 12 Ll - azo det 1 13 + azz det 1 12
a2 A23 a21 Aag3 a1 a22

If we use our usual notation from Definition 8.1, we see that
det(A) = det(C) = asi det(A?,l) — aso det(A?,g) + ass det(Agg).

On the other hand, if we had wanted to expand by the second row, we would
have used the matrix
a21  G22 023
D= a1 a2 a3
aszr a3z ass
Then we know that det(A4) = — det(D) and expanding det(D) by the first row, we
get
det(A) = — det(D) = —a21 det(Agl) + a2 det(AQQ) — ag3 det(Agg).
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It should now be clear how this argument may be generalized for n x n matrices.
Suppose we have an n x n matrix A = (a;5);,;. Suppose we want to compute its
determinant by expanding by the k-th row. So we perform the operations Ry <
Rip_1,Rp—1 < Rp_a,...Ry <> Ry. Thus, det(B) = (—1)¥"!det(A). It is easy to
see that for any [, 1 <1< n, (n —1) x (n — 1) matrix obtained by deleting the first
row and [-th column in B is the same as the (n — 1) x (n — 1) matrix obtained by
deleting the k-th row and [-column in A. Thus,

det(B) = ajy det(Ap1) — apa det(Aga) + -+ + (—1)" ag, det(Ap,).
Hence,
det(A) = (—1)" a1 det(Agr)—(—1)" apz det(Agz) + -+ (= 1) 2ay,, det(Apy).
This can be rewritten (for aesthetic reasons) as
det(A) = (—1)  lag; det(Ag1) + (=1 2apo det(Apa) + - - - + (—1) " ag, det(Apy).

(Note that these formulas are the same since, for instance, (—1)*=! = (=1)F*+1,
etc.) Thus, we have proved the following:

THEOREM 11.1 (Expansion by rows). Let A = (a;j)i,; be an n x n matric. For
any pair of integers i,j satisfying 1 < i,j < n, let A;; be the matriz obtained by
deleting the i-th row and j-column of A. Then for any k satisfying 1 < k < n, we
have

det(A) = zn](—l)k+lakl det(Akl).
=1

Taking the transpose of a matrix turns its rows into columns. As the determi-
nant of a matrix is equal to that of its transpose, we obtain the following result for
expansion by columns:

THEOREM 11.2 (Expansion by columns). Let A = (a;5)i,; be an n x n matriz.
For any pair of integers i,j satisfying 1 < i,7 < n, let A;; be the matriz obtained
by deleting the i-th row and j-column of A. Then for any k satisfying 1 < k < n,
we have

det(A) = Z(—l)k+lalk det(Ax).
=1

Using this we can now prove Theorem 10.7 which states that if Aisann xn
matrix and C is its cofactor matrix, then AC'" = C*" A = det(A) - I,,.

PrROOF OF THEOREM 10.7. We recall some of the notation we had set up be-
fore stating Theorem 10.7. We have been given the n x n matrix A = (a;;);,;. For
any ordered pair (¢,7) with 1 < 4,j < n, we define A;; to be the (n — 1) x (n —1)
matrix obtained by deleting the i-th row and j-th column of A. Then, for any such
ordered pair (4, j), we define ¢;; = (—1)"*7 det(A;;). Then, C is the matrix defined
which has ¢;; in the (i, j)-position. Thus, C*" has ¢;; in the (4, j)-position.

Let D = (d;;)i; be the product AC*". Then, by the definition of matrix
multiplication,

dij = Z air - ((k,j) — entry of C*")
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If © = j, we see by Theorem 11.1 that this d;; = det(A). Thus, all the diagonal
entries of D are equal to det(A).

Now, let us fix some ordered pair (i,j) satisfying 1 < 4,5 < n and ¢ # j. Let
A’ be the matrix obtained by replacing the j-th row of A by a copy of the i-th row.
Then, it is easy to see for any k, the (j, k)-cofactor of A’ is just

(—1)i+j det(Ajk) = Cjk-

Thus, we by using the formula for the expansion of the determinant by the j-th row
that

n

det(A") = Z (—1)7*a; det(Ajp)

k=1
But the i-th and j-th rows of A’ are identical. Thus, det(A’) = 0. Thus, for ¢ # j,
d;; = 0. This completes the proof the theorem. O

Recall that this gives us a formula (see Corollary 10.8) for the inverse matrix
(if it exists). We can now use this to prove Theorem 10.10.

PROOF OF THEOREM 10.10. Let X denote the column matrix [X1,..., X, ]
and let B be the column matrix [by,...,b,]|"". Then the system may be written as
AX = B. If A is invertible, we multiply both sides of this equation by A~! to get
X = A7'B. Using the formula for the inverse from Corollary 10.8, we see that

X; = 9y
Z det(A)b]
j=1

1 n L
- —1)i* A;b;.
det(A) Z( ) g7
j=1

Expanding det(A;) by the i-th column, we see that
det(AZ) = 2(—1)l+JbJAJZ
j=1
This completes the proof of the theorem. O
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Permutation matrices

We will now write down a formula for the complete expansion of a determinant.
To illustrate the method, we will demonstrate for 2 x 2 matrices.

Suppose
A - [@11 012
a21 Q22
be a given matrix. First, we write the first column of A as a sum as follows:
1
ail _ aq + 0
as 0 a1
Then, using Lemma 8.5, we see that

det(A) = det [an al?] + det [ 0 a12]
0 a22 a1 a2

Now, we split the second column of the matrix in a similar manner.

[ 12] [ 12] [ 0 ]
a2 0 a22
Thus, applying Lemma 8.5 again, we get

det(A) = det [all alQ] + det [(111 aO ] + det [ 0 al?] + det [ 0 0 ]
22

0 0 0 a0 a1 Q22

Recall that if any row or column of a matrix is multiplied by a constant c, its
determinant also gets multiplied by ¢. Thus, we obtain the following expression:

1 1 1 0 0 1
det(A) =a11a12 det |:0 O] + a11a29 det [O 1:| + a12a21 det |:1 O:|

0 0
+ a210G29 det [1 1]

The first and the fourth determinants on the right hand side are clearly equal to
zero because the matrices have two identical columns each. Thus, we are left with

det(A) = ajiaze det [é (1)] + aioa97 det [? (1)]
Computing these two determinants gives us the familiar formula for the determinant
of a 2 x 2 matrix.
We now use this method on an n X n matrix. Any column matrix can be
written as a sum of n column matrices, each of which has at most one non-zero
term. Indeed, we can write

aq ay 0 0
a9 0 a9 :
= .|+ . [+ +]:

: 0

an 0 0 an
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Given any n x n matrix A = (a;5);,; we apply this method to each of the columns
of A successively, to write
det(A) = > det(Ay, )
1<iy,..in<n
where A;, 4, is the matrix in which the (ij, j)-entry is equal to a;,; for every j,
and all other entries are 0. Thus, every column has at most one non-zero entry. As
above, we may pull out these entries as common factors from each column to write

dCt(A) = Z 110352 Qjn dCt(Pil“_‘n)
1<i1,... in<n

where P;, ;, is the matrix in which the (i}, j)-entry is equal to 1 for every j, and
all other entries are 0. If for some matrix P,  ;, , we have iy = 4; for some k # [,
the k-th and I[-th columns of this matrix are identical and hence its determinant
is equal to 0. Thus, in the summation on the right, we only need to retain those
terms in which all the iq,...,1, are distinct. To describe such choices of iy, ..., ,,
we will use permutations.

DEFINITION 12.1. Let T be any set. A permutation of T is a function f : T — T
which is one-one and onto (i.e. it is bijective).

NoTATION 12.2. The set of all permutations of the set {1,...,n} will be denoted
by Sp.

Thus, if 0 € Sy, all the elements of the set {1,...,n} occur exactly once in
the sequence o(1),...,0(n), in some order. Conversely, if we take any sequence
i1, ...,y in which all the elements of the set {1,...,n} occur exactly once in some

order, the function o : {1,...,n} — {1,...,n}, defined by o(j) =i, forall1 < j <n
is a permutation.

DEFINITION 12.3. For any o € S,,, we define the permutation matriz associated
by o to be the matrix which has 1’s in the (o(4),4) position for every i, 1 < i < n,
and 0’s elsewhere.

Thus, we have obtained the formula
det(A) = Z ag(l)lag(gp e ag(n)n det(Po').
oES,

For any permutation o, the permutation matrix P, can be obtained from the
identity matrix by successively switching rows. Thus, det(P,) = +1 for any per-
mutation o.

DEFINITION 12.4. The sign of a permutation o € S,, is defined to be det(P,)
where P, is the permutation matrix corresponding to ¢ and is denoted by sign (o).

Thus, we have proved the following:

THEOREM 12.5. Let (a;;)i; be an n x n matriz. Then

det(A) = Z 8ign(o) * Ag(1)105(2)2 - - - Ao (n)n-
g€ES,

While this formula is conceptually elegant, it is not necessarily the most efficient
tool for actually computing the determinant of a matrix, particularly for large n.
However, it is good to know that the signs of all the terms in the expansion do have
a simple description.



LECTURE 13

Vector spaces: Introduction and motivation

We begin this lecture by re-examining some of the objects we have already
studied, in order to motivate the abstract notion of a vector space. We have already
been studying some concrete examples of vector spaces, namely the sets R™. We
begin by observing the algebraic structure that exists on these sets.

The sets R™ are equipped with the following operations:

(a) Addition: This is a function from the product R™ x R™ to the set R". In
other words, it takes a pair of elements x and y of R™ and produces a
third element of the set R™, which we denote as x + y. If

Z1 Y1

€2 Y2
x=1 . and y =

Tn Yn

then we define as follows:

T+

T2 + Y2
X+y=

Tn + Yn

(b) Secalar multiplication: This is a function from R x R™ to R™. In other
words, it takes an element ¢ € R, an element x € R™ and produces an
element of R™, which we denote as cx. If

X1 CI1

Xro CT2
x=| .|, then wedefine cx= .

T Cxn

These operations satisfy certain standard properties, which we will not list in
detail for now.
Let A be an m x n matrix with entries from R. We define a function T4 : R" —
R™ by Ta(x) = Ax. It is easy to verify that this function satisfies the following:
(i) Ta(x+y) =Ta(x) + Ta(y) for x,y € R™.
(ii) Ta(ex) = cTa(x) for ce R and x € R™.
These two properties could also be expressed more concisely by saying that T4 (ax+
by) = aTx(x) + bTa(y) for all a,be R and x,y € R™.
We note that the matrix A and the linear transformation 74 fully characterize
each other. Indeed, we will now show that if the linear transformation 74 is given
to us, the matrix A can be recovered from it.

DEFINITION 13.1. Let n be a positive integer. For 1 < ¢ < n let e; be the
n x 1 matrix having 1 in the (¢, 1)-position and 0’s elsewhere. The ordered tuple
(e1,e2,...,e,) is called the standard basis of R™.

59
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We will discuss the notion of a “basis” in greater detail later and at that point
this terminology will make much more sense. For now, we note that this basis is
useful for recovering the matrix A from the linear transformation T4. Indeed, a
simple calculation shows that for each i satisfying 1 < ¢ < n, the column matrix
T4(e;) is just the i-th column of the matrix A. (Check this by explicit matrix
multiplication.) Thus, if we are given the linear transformation T4, we may recover
A by simply computing the column matrices T'(e;) for all i and then putting them
together into an n x n matrix.

We now observe a useful property of the standard basis of R”. Given any
x = [z1,...,2,]" € R", we write

X1 1 0 0

T2 0 1 :
X=|.|=x1|.|+x +FTn |
: : 0 0

Ty 0 ) 1

Thus, every vector can be written as a sum of multiples of the e;. It is clear that
this can be done in a unique manner. In other words, if y1,...,y, are real numbers
such that x = y1e1 + yse2 + - - - + ype,, then we must have x; = y; for all i.

DEFINITION 13.2. A function T': R™ — R™ is said to be a linear transformation
(or a linear map) if
T(ax + by) = aT(x) + bT(y)

for all a,b e R and x,y € R"™.

EXERCISE 13.3. Let T : R® — R™ be a linear function. Let & be a positive
integer. Let c¢1,...,cx € R and let x1,...,x; € R". Show that
T(e1xy + -+ epxp) = aT(x1) + -+ + e T(xx).
(Hint: You may use induction on k.)

We saw above that any m x n matrix gives rise to a linear transformation from
R™ to R™. We will now see that the converse is also true.

THEOREM 13.4. Let T : R™ — R™ be a linear transformation. Let A be the
m xn matriz which has T(e;) as its i-th column. Then T(x) = Ta(x) for all x € R™.

PROOF. Suppose X = [z1,...,2,]"" where x; € R for all . Then, as above, we
see that x = }" | z;e,. By Exercise 13.3, we have

T'(x) = T(Z Ti€;) = Z z;T(e;).

By definition T'(e;) is the i-th column of A and is hence equal to Ae;. Thus, as Ty
is known to be a linear transformation, we get

T(x) = > zTale;) = Ta( ), ie;) = Ta(x).
i=1 i=1

]

Given any linear transformation 7", the above theorem shows that we can con-
struct a matrix A such that T' = T4. We observe that there can be only one
matrix with this property. Indeed, if T' = T for some other matrix B, then
Ta(e;) = Tp(e;) for every i. Hence the i-th columns of A and B are equal for every
i. Thus, A and B are the same matrix. Thus we have established a 1-1 correspon-
dence between the set of m x n matrices and linear transformations from R" to
R™.
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Now we will begin to construct some abstract objects on the basis of these
concrete examples.
Fields:

In most of our discussion, we have restricted our scalars to the set of real
numbers. However, we have only used a few basic properties of the set of real
numbers, which are also satisfied by the set of rational numbers. Thus, our entire
discussion would remain valid if we were to replace R by Q. More generally, we
would be able to do this with any field, which is defined as follows:

DEFINITION 13.5. A field is a set F’ which comes equipped with two functions,
called addition and multiplication, from F x F to F. The addition function will
be written as (z,y) — x + y and the multiplication function will be written as
(z,y) — x - y. (Sometimes, we may also write = x y or zy in place of = - y.) These
functions are required to satisfy the following properties:

(1) Properties of addition:
(a) Associativity: (x +y)+z=x+ (y+2) forall x,y,z € F.
(b) Commutativity: x +y =y + x for all z,y € F.
(¢) Additive identity: There exists a unique element 0 such that x + 0 =
O+x=zxforallxzeF.
(d) Additive inverse: For every x € F, there exists a unique element —x
satisfying z + (—z) = (—z) + 2 = 0.
(2) Properties of multiplication:
a) Associativity: (zy)z = x(yz) for all x,y,z € F.
b) Commutativity: zy = yz for all x,y € F.

(¢) Multiplicative identity: There exists a unique element 1 such that

z-1l=1.-z=xforallzeF.

(d) Multiplicative inverse: For every z € F such that x # 0, there exists

a unique element x~! satisfying x-271 = 271.2 = 1. (It is customary
to write z/y instead of x - y~! for z,y € F with y # 0.)
(3) Distrbutive property: z(y + z) = zy + zz for z,y,z € F.

EXAMPLES 13.6.

(1) As mentioned before the set of real numbers and the set of rational num-
bers, equipped with the usual operations of addition and multiplication,
form fields which are denoted by R and Q respectively.

(2) We start with the set R?2. We define the addition on this set by

(@,9) + (z,w) = (+ 2,y + w)
and multiplication by
(#,y) - (z,w) = (z2 — yw, 2w + y2).

It can be easily verified that this set is a field with the additive identity
being (0,0) and the multiplicative identity being (1,0). The set R?, with
these operations, is called the field of complex numbers, and is denoted by
C.

For any element z € R and any element o = (y, 2) € R?, we write 2 - «
for (xy,xz). Thus, any element (z,y) € C can be written as

(x,y) =x-(1,0) +y - (0,1).
We denote the element (0, 1) by ¢. Since (1,0) is the multiplicative identity
in C, we abuse notation to write z - (1,0) + y - (0,1) as x + yi. Observe
that
(0,1)-(0,1) = (—=1,0) = —1-(1,0).
Thus, if we identify every real number z € R with the element z - (1,0) =
(2,0) of C, we see that i is a square-root of —1 in C.
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(3) Let p be any prime number. We consider the set F, := {0,1,...,p — 1}.
For any two elements a,b € IF,, we define the sum a®b to be the remainder
left when we divide the integer a + b by p. Similarly, we define the product
a ® b to be the remainder left when we divide the integer ab by p. It can
be verified that, with these operations, IF,, forms a field.

In everything that we have done so far in this course, we can replace R by any
field. So from now on, we will work with a general field F.

Vector spaces:

DEFINITION 13.7. Let F be a field. A vector space over F' (or an F-vector
space) is a set V, equipped with a function called addition from V x V' — V and
a function called scalar multiplication from F' x V' — V. The addition function
will be written as (x,y) — x +y and the multiplication function will be written as
(¢,x) — c-x. (Sometimes, we may also write ¢x in place of ¢ - x.) These functions
are required to satisfy the following properties:

(1) Properties of addition:
(a) Associativity: x+ (y+2z) = (x+y)+zforall x,y,ze V.
(b) Commutativity: x+y =y +x for all x,y e V.
(¢) Additive identity: There exists an element 0 € R™ such that x + 0 =
O+x=xforalxeV.
(d) Additive inverse: For every x € V, there exists an element, which we
denote by —x, and which satsifies x + (—x) = (—x) + x = 0.
(2) Properties of scalar multiplication:
(a) Associativity: c(dx) = (cd)x for all ¢,d € F and x € V.
(b) Unital property: 1x = x for all x e V.
(3) Distributive properties:
(a) (c+d)x=cx+dxforc,de Fand xeV.
(b) ¢(x+y) =cx+cy force F and x,y € V.

Given any vector space V, its elements will often be referred to as vectors.

ExAMPLES 13.8. Let F be a field. In the following examples, when we say
vector space, we always mean an F-vector space.

(1) Consider the set {0} on which addition is defined by 0 + 0 = 0 and scalar
multiplication is defined by x - 0 = 0 for any « € F. This clearly forms a
vector space, which is called the zero vector space.

(2) For any integer n, the set F™ of n x 1 matrices with entries from F is an
F-vector space.

(3) For any fixed positive integers m and n, the set My, «,, (F') of mxn matrices
with entries from F' is a vector space. Addition is defined as in Lecture 6.
Given any matrix m x n matrix A = (a;;);,; and ¢ € F, we define cA to
be the m x n matrix having the entry ca;; in the (4, j) position. It is easy
to check that this is an F-vector space.

(4) Let S be any set. Consider the set Func(S, F) of all functions from S to
F. For f,g € Func(S, F), we define the sum f + g to be a function from
S — F defined by (f + g)(s) = f(s) + g(s) for all s € S. For ¢ e F and
f € Func(S, F) we define cf € Func(S, F) by (cf)(s) = ¢(f(s)) for all
s € S. It is easy to verify that this is an F-vector space.
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Basic properties of vector spaces; subspaces

In Lecture 13, we defined linear transformations from R™ to R™. It is easy to
see that this definition can now be generalized to vector spaces.
Let F' denote an arbitrary field.

DEFINITION 14.1. Let V and W be F-vector spaces. A linear transformation
(or linear map) from V to W is a function T : V' — W such that

T(ax + by) = aT'(x) + bT(y)
for all a,be F and x,y e V.
The following lemma is easy to prove and the proof is left as an exercise:

LEMMA 14.2. Let V and W be F-vector spaces. Let T : V. — W be a function.
Then, T is a linear transformation if and only if both of the following conditions
hold:

(a) T(x+y)=T(x)+T(y) forallx,ye V.
(b) T(cx) =cT'(x) for allce F and xe V.

DEFINITION 14.3. Let V and W be F-vector spaces. An isomorphism from V'
to W is a linear transformation T : V' — W which is a bijection. If there exists an
isomorphism from V to W, we say that V and W are isomorphic.

REMARK 14.4. It is easy to check that if T : V' — W is an isomorphism, then
the inverse function T-! : W — V (which is well-defined because T is a bijection)
is also linear. Thus, 77! is also an isomorphism of vector spaces.

If two spaces are isomorphic, they have the same mathematical properties,
though they may be distinct objects. Note that there may be more than one iso-
morphism between two vector spaces.

ExaMPLE 14.5. Let V be a vector space and let Idy : V — V be the identity
map defined by Idy (x) = x. It is easy to see that Idy is an isomorphism of vector
spaces.

EXAMPLE 14.6. Let V = F2. Let T : V — V be defined by

r([]) - ()

It is easy to see that this is an isomorphism. If F = R, we may think of R? as
the Euclidean plane and you should be able to recognize this transformation as the
reflection in the z-axis.

EXAMPLE 14.7. Let m and n be positive integers. Let T : My, xn(F) —
My s (F) be defined by T(A) = A", Tt is easy to see that T is a bijection. You
may check that 7" is also a linear transformation. (This is very easy.) Thus T is an
isomorphism of vector spaces.

EXAMPLE 14.8. Let n be an integer and let S = {1,2,...,n}. Let V =
Func(S,F) and let W = F™. We will construct an isomorphism from V to W.

63
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We first define a function ¢ : V' — W. Given any f € V = Func(S, F'), we want
to construct an element of W = F™. f is a function from S to F'. Thus, for every
ieS=1{1,2,...,n}, f(4) is an element of F. We define

Let us check that ¢ is linear. Let f,g € V and let a,b € F. We want to
show that ¢(af + bg) = agd(f) + bp(g). By definition, for every i € S, we have

(af +bg)(i) = (af)(i) + (bg)(i) = af(i) + bg(i). Thus,

][] e

a +

staf+og) = | =a | 0 T | = a0t + ot
of ) +bgn) | [ f)] o

Thus, ¢ is linear.
If ¢(f) = ¢(g) then the column matrices

(1) g(1)

£2) 9(2)
: and

f(n) g(n)

are equal. Hence their corresponding entries must be equal. Thus f(i) = g(i) for
all 7, 1 <i < n. Thus f = g. This shows that ¢ is a 1 — 1 function.

Given any x = [z1,...,2,]" € W, we can define f : S — F by f(i) = x;. Then
it is clear that ¢(f) = x. As x was arbitrary, this shows that ¢ is onto. Thus we
have now shown that ¢ is a bijection. Thus, ¢ is an isomorphism.

Another way to check that ¢ is 1 —1 and onto is to directly construct the inverse
function of ¢. If x = [z1,...,z,]"", we define ¥(x) to be a function S — F defined
by ¢¥(x)(i) = ;. Then one needs to check that ¢ (¢(f)) = f for all f € V and
¢((x)) = x for every x € W. (You may check this as an easy exercise.)

We will now prove some simple results about vector spaces.
The following result shows that the additive identity in a vector space is unique:

PROPOSITION 14.9. Let V' be a vector space. Let w € V' be such that v+w = v
forallveV. Then w = 0.

PrROOF. We take v = 0. Then the assumption on w tells us that 0 + w = 0.
However, by the definition of 0, we also know that 0 + w = w. Thus we see that

0=0+w=w.

This proves the result. O

The next result shows that the additive inverse of any element is unique:

ProproOSITION 14.10. Let V' be a vector space and let v e V. If w is such that
v+w=0, then w=—v.
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PROOF. We observe that
w=0+w
=(-v+v)+w
=(=v)+ (v+w)
=(-v)+0
= —vV.
This completes the proof. O
ProprosSITION 14.11. Let V' be a vector space and let v e V. Then Ov = 0.

PRrROOF. We observe that

Ov=(0+0)v
=0v + Ov.
Adding —0v on both sides, we get 0 = Ov. (|

PROPOSITION 14.12. Let V' be a vector space and let v inV. Then, we have
(=1)-v=—v.

PROOF. From the definition of vector spaces, we know that 1-v = v. Thus,
we observe that
v+ (-1)-v=1-v+(-1)-v
= (1+ (1) v
=0-v
=0.
By Proposition 14.10, we see that (—1) - v = —v. O

Subspaces:

Let V be a vector space. A subset U of V is said to be a subspace of V if the
addition and scalar multiplication on V', when evaluated on elements of U, turns
U into a vector space. Thus, for this to happen, for any x;,x5 € U, we must have
X1 + x9 € U. Also, for any c € F and any x € U, we must have cx € U. A priori, it
may seem that, once this is verified, one must also check that the various properties
of addition and scalar multiplication also hold for U. But this is not necessary since
they are already known to hold in V! Thus, we may actually define subspaces as
follows:

DEFINITION 14.13. Let V be a vector space. A subset U < V is said to be a
subspace of V if the following two conditions hold:

(1) For any x1,x5 € U, we have x; + x2 € U.
(2) For any c € F and any x € U, we have cx € U.

The following lemma gives shows that these two conditions may be expressed
in a more concise manner. The proof is left as an exercise.

LEMMA 14.14. Let V be a vector space. A subset U c V is a subspace of V if
and only if for any x1,x2 € U and any a,b € F, we have ax; + bxs € U.

EXAMPLE 14.15. Let V = F2. Let
U= {[zl,xg]” X1 € F,SCQ = O} .

It is easy to check that U is a subspace.






LECTURE 15

Subspaces, spans of subsets, linear independence

More examples of subspaces:

DEFINITION 15.1. Let V and W be vector spaces and let T : V. — W be a
linear transformation.

(a) The kernel of T, denoted by ker(T) is defined by
ker(T) ={veV :T(v) =0}.
(b) The image of T, denoted by im(T) is defined by
im(T) ={T(v):veV}.

LEMMA 15.2. Let V and W be vector spaces and let T : V. — W be a linear
transformation. Then ker(T) is a subspace of V and im(T) is a subspace of W.

PROOF. Suppose vi,vy € ker(T) and aq,as € F. Then
T(a1v1 =+ a2v2) = alT(vl) + CLQT(VQ) = 0.

Thus ker(T) is a subspace of V.
Suppose w1, wo € im(T') and a;,as € F. By assumption, there exist vi,vy € V
such that T'(vi) = w) and T'(vs) = wa). Thus,

T(a1vy + asva) = a1T(v1) + a2T(va) = a1 w1 + aswa.
Thus, a1 wi + agwa € im(T). Thus, im(T) is a subspace of W. O

Studying the kernel and image of a linear transformation can be very useful for
understanding its properties, as the following lemma shows:

LEMMA 15.3. Let V and W be vector spaces and let T : V. — W be a linear
transformation.
(a) T is 1 —1 (ingective) if and only if ker(T) is the zero subspace of V.
(b) T is onto (surjective) if and only if im(T) = W.

PRrOOF. Part (b) is obvious from the definition, and so we focus on proving (a).

Suppose T is 1 —1. Then if T(v) = T'(0) = 0, we must have v = 0, which shows
that ker(T) is the zero subspace.

Conversely, suppose that ker(T) is the zero subspace. If T is not 1 — 1, there
exist vy, ve such that vy # vo, but T'(v1) = T(vg). Thus,

T(V1 — V2) = T(Vl) — T(Vg) =0.
However, vi — vy # 0. Thus, ker(T) is not the zero subspace of V. O

PROPOSITION 15.4. Let V' be a vector space and let {W;}ier be a collection of
subspaces of V. Then, the intersection W = (..; W; is a subspace of V.

el
PROOF. Let wi,wy € W and let ay,a € F. For any i € I, wy,wy € W;. Thus
a1wW1 + aswo € W, for every i € I. Thus aywy + aowo € W. This shows that W is

a subspace of V. (]

67
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Span of a set:

DEFINITION 15.5. Let V' be a vector space and let S be a subset of V. The span
of S, denoted by span(S) is the intersection of all subspaces of V' which contain S.

It follows from Proposition 15.4 that the span of a subset S is actually a subspace
of V. Since it is contained inside every other subspace which contains S, we see
that it is the smallest subspace of V' which contains S. We will now obtain a more
concrete description of this subspace.

DEFINITION 15.6. Let V' be a vector space and let S be a subset of V. An
element v € V is said to be a linear combination of elements of S if there exist
finitely many elements vq,...,v, of S and elements aq,...,a, € F such that

V=a1Vy + - -anVvp.

PROPOSITION 15.7. Let V' be a vector space and let S be a subset of V. Then
span(S) is equal to the set of all the linear combinations of elements of S.

PrOOF. Let W be some subspace of V' containing S. Then for any elements
vi, vy € S and elements a1, as € F, the element a1vy 4+ asvso lies in W. A simply
induction argument allows us to deduce from this that if v, ..., v, are elements of
Sand ai,...,a, € F, then the element »,"" | a;v; is in W. (Exercise: Use induction
on n to prove this.) Thus, we see that the set of linear combinations of S is contained
in span(S).

We now claim that the set of all linear combinations of elements of S is actually
a subspace of V. Since this set contains S itself, and since span(S) is contained in
any subspace of V' containing S, this will imply that span(S) is contained in the
set of linear combinations of S. Thus, it will follow that span(S) is actually equal
to the set of linear combinations of S.

Thus, it now remains to show that the set of linear combinations of S is a
subspace. Suppose v and w are linear combinations of elements of S. Thus, there
exist elements vi,..., vy, W1,..., W, in S and a1, ...,am,b1,...,b, € F such that
v=>>" a;v; and w = i = 1"b;w;. Then, for any a,b € F, the element

av + bw = E(aai)vi + Z(bbi)wi
i=1 i=1
is clearly a linear combination of elements of S. This completes the proof. ]
EXAMPLE 15.8. Let V = F3. Let
1 0 -1
vy = 1 9 Vo = 1 B V3 = O
0 1 1

First we compute span(vy, va). Suppose w is in span(vy, va). Thus, there exist
a,b € F such that
a
w=avy+bvo=|a+b
b
Now we compute span(vy, va,v3). We see that w lies in span(vi, vy, vs) if and
only if there exist a, b, c € F' such that
a—c
w=avy+bvot+tcvy=|a+b
b+c

A careful examination of these expressions shows that span(vy, va) is the same
as span(vy, va,v3). There is a very simple explanation for this. Indeed, we have
vy = vo — vi. Thus, in any linear combination of vy, vy, v3, we may substitute
vo — vy in place of vz and thus rewrite it as a linear combination of vy, vo.
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The above example suggests that if an element of S is a linear combination of
the remaining elements of S, then it may be removed from S without diminishing
the span. We will establish this rigorously, but first we set up some notation for
dealing with linear combinations of an arbitary set.

CONVENTION 15.9. Let V' be a vector space. Let I be a set of indices (i.e.
labels) and let S = {v;};c; be a family of elements of V' indexed by I, possibly with
repetitions. (Thus, we may have v, = v; for some ¢ # j.) Then, in general, if I is
an infinite set, the sum ) ,_, v; makes no sense at all. However, if all but finitely
many of the v; are equal to zero, it can be interpreted in a meaningful way — we
just interpret it as the sum of the non-zero terms.

This convention is particularly useful for expressing linear combinations of sets.
Let S be an arbirary set of elements of V. Then an arbitrary linear combination
of elements of S may be written as >, ¢ avVv where we assume that all but finitely
many of the a, are equal to 0. Thus, all but finitely many of the vectors a,v are
equal to 0 and so the given expression is interpreted as the sum of the finitely many
non-zero terms. This makes it unnecessary to keep track of the n in Definition 15.6
when we speak of an arbitrary linear combination of elements of S. The constant
av will be called as the coefficient of v in the given expression.

LEMMA 15.10. Let V' be a vector space and let S be a subset of V. Suppose v

is an element of S such that it is a linear combination of the elements of the set
S\{v}. Then span(S) = span(S\{v}).

PRrROOF. Let T = S\{v}. It is clear that span(T) < span(S). We need to show
that span(S) < span(T).

By assumption, v = >, aww where aw € F for all w and all but finitely
many of them are zero. Now let u be in span(S). We write u = ) bww where
bw € F for all w and all but finitely many of them are zero.

Thus,

weS
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As only finitely many of the ay and by, are non-zero, only finitely many of the
expressions (byayw + by ) are non-zero. Thus, the final expression we have obtained
still makes sense and represents a linear combination of elements of 1. Thus, it
follows that w € span(T). O

Thus, as far as the span is concerned, elements of S that are linear combinations
of the other elements are superfluous and may be removed from S. We now consider
sets which cannot be shrunk in this manner.

DEFINITION 15.11. Let V' be a vector space and let S be a subset of V. We
say that S is a linearly independent set if for every element v of S, we have v ¢
span(S\{v}). In this case, the elements of S are also said to be linearly independent.
If the elements of S are not linearly independent, we say that they are linearly
dependent.

PRrROPOSITION 15.12. Let V' be a vector space and let S be a subset of V. Then
the following statements are equivalent:
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(1) Ewvery element of span(S) can be uniquely written in the form Y, g avV.

(2) Suppose that some linear combination Y, g avV of elements of S is equal
to 0. Then a is equal to O for all v e S.

(3) The set S is linearly independent.

PRrROOF. Suppose (1) is true. Then | _sayv and >, o0 v are two ways of
expressing 0 as a linear combination of elements of S. Since we are assuming (1),
it follows that these are the same and hence ay = 0 for all v e S. Thus (1) implies
(2).

Suppose (2) is true. If (3) is not true, there exists an element v € S such that
V =D wes\{v} @wW. Then the linear combination

(-1)-v+ Z Aw W
weS\{v}
is equal to 0. But then since we are assuming (2), all the coefficients in this expres-
sion must be equal to 0. This implies —1 = 0, which is a contradiction. Thus, (3)
must be true. Thus (2) implies (3).

Suppose (3) is true. If (1) is not true, there exists an element which can be
expressed as a linear combination of elements of S in two distinct ways. In other
words, there exist expressions »] ¢ awW and >, ¢ bwW which are equal, but the
coefficients do not match. In other words, there is some v € S such that a, # by.

Thus
(ay —by) v = Z (bw — aw) - W,
weS\{v}
and hence b
w — Qw
v= ) <avbv) W
weS\{v}

This shows that S is not linearly independent, which contradicts (3). Thus, (1)
must be true. So, we see that (3) implies (1).
Thus, the three given statements are equivalent. O

ExampLE 15.13. Let V be a vector space and let v be a non-zero element of
V. Then the set {v} is linearly independent.

EXAMPLE 15.14. The standard basis of F™ is a linearly independent set.
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Bases of vector spaces

We saw in Proposition 15.12 that a set S is linearly independent if and only if
whenever we have an equation of the form

Z:avV=07

we must have a,, = 0 for all v. In general, any equation of the above sort is called
a linear relation between the elements of S. If all the a are equal to 0, we say that
this relation is trivial. Thus, our result can be summarized by saying that a set S
is linearly independent if and only if every linear relation between its elements is
trivial.

LEMMA 16.1. Let V' be a vector space and let S be a subset of V' which is linearly
independent. If v € V\span(S), then S U {v} is linearly independent.

PROOF. Let us denote the set S U {v} by T. Suppose we have some linear
relation Y., . aww = 0. We will prove that ay = 0 for all we T.

If the coefficient ay, of v is 0, then we see that > _saww = 0. As S is
assumed to be linearly independent, we see that ay = 0 for all w € S. Thus, as we
already have assumed that conclude that a, = 0, we conclude that ay = 0 for all
weSu{vl=T.

Now suppose that a, # 0. Then we may write

Gy
o= 5 ()
weS v

which shows that v € Span(S), which contradicts our assumption. Thus, we cannot
have a, # 0. This completes the proof. O

DEFINITION 16.2. Let V be a vector space. A subset S of V is said to be a
spanning set of V if span(S) = V. In this case, we also say that the set S spans V.
A basis of V is defined to be a spanning set which is linearly independent.

CONVENTION 16.3. The plural form of the word “basis” is “bases”.

Clearly, every vector space has at least one spanning set. Indeed, the whole
space V can be considered as a spanning set of itself! However, it is not clear that
every vector space has a basis. This is true, and we will give a heuristic argument
below for this. However, we will not give a rigorous proof. First we deduce some
basic properties of bases from the definition.

PROPOSITION 16.4. Let V' be a vector space and let S be a basis of V.

(a) Let ve S. Then S\{v} does not span V.
(b) Let we V\S. Then the set S U {w} is not linearly independent.

Proor. If S\{v} spans V, then v € span(S\{v}). But then, by definition, S is
not linearly independent and hence cannot be a basis. This is a contradiction and
so our assumption that S\{v} must be wrong. This proves (a).

Suppose T := S u {w} is linearly independent. Then w cannot be in the span
of T\{w} = S. This contradicts the given fact that span(S) = V. Thus, our
assumption that T is linearly independent must be incorrect. This proves (b). O
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This shows that a basis of a vector space is finely balanced between being a
spanning set and being linearly independent. If we try to enlarge it, it ceases to be
linearly independent. If we try to diminish it, it ceases to be a spanning set. The
following discussion will clarify this further.

Let us say that a subset S of V' is a minimal spanning set if no proper subset T’
of S is a spanning set of V. (Definition: A B is said to be a proper subset of a set A
if Bc A, but B # A.) So the above proposition shows that every basis is a minimal
spanning set. Conversely, suppose that S is a minimal spanning set. Then, we claim
that it must be linearly independent. Indeed, if it is not so, then there exists some
v € S such that v € span(S\{v}). But then span(S\{v} = span(S) = V. Thus,
S\{v} is also a spanning set of V| which contradicts the minimality of S. So, S is
linearly independent. Thus, a spanning set is a basis if and only if it is minimal.

On the other hand, we say that a subset S of V' is a mazimal linearly independent
set if no set T which properly contains S (i.e. S < T but S # T) is linearly
independent. The above proposition shows that every basis is a maximal linearly
independent set. Conversely, suppose that S is a maximal linearly independent set.
Then we claim that span(S) = V. Indeed, if this is not so, let v € V\span(S). Then
Lemma 16.1 shows that S u {v} is also a linearly independent set. This contradicts
the maximality of S. So, span(S) = V. Thus, a linearly independent set is a basis
if and only if it is maximal.

Existence of bases — a heuristic argument: Clearly every vector space V has at
least one linearly independent set, i.e. (J. We saw in Lemma 16.1 that if a linearly
idependent set is not a basis, it can be enlarged. So if ¢F is not a basis for V' (i.e.
if V' is not the zero space), then we enlarge it to a bigger linearly independent set
S1. If Sp is not a basis, we enlarge it to a bigger linearly independent set Ss ... and
so on. This is almost a proof, but the phrase “and so on” at the end is not very
rigorous. It takes some work to get rid of that phrase and we will not do that in
this course.

We may also try to construct a basis “from the opposite end”. Since a basis is
a minimal spanning set, we could start with a large spanning set and then try to
shrink it till it becomes minimal, and hence linearly independent. So for instance,
we can start with the set V. If V is not a basis for itself, we can find a v in V' such
that Ty := V\{v} is spans V. If T} is not a basis, we can find remove yet another
vector from it, ... and so on. Again, this argument can also be made rigorous with
some work.

Though we are not going to prove it in full generality, we will formally state
the result.

THEOREM 16.5. Every vector space has a basis.

A special case:

DEFINITION 16.6. A vector space V is said to be finite dimensional if it has a
finite spanning set.

THEOREM 16.7. Let V be a finite dimensional vector space. Then V' has a basis.
Indeed, any spanning set of V' contains a subset which is a basis.

PROOF. By assumption, there exists a finite set S such that span(S) = V.
Suppose |S| = n. (Notation: For any set A, we will denote its cardinality by |A|.)
If S is not a basis, there exists an element v € S such that S; := S\{v} spans V.
If S7 is not a basis, we can again remove an element from it in such a way that the
resulting set Sy spans V. We continue in this manner. This process can continue
for at most n steps since S has only n elements. Thus, we will find a basis within
n steps. O
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QUESTION 16.8. Can we also construct a basis by enlarging linearly independent
sets?

Yes, we can, but it will take some work to show that the process terminates.

PROPOSITION 16.9. Let V' be a vector space and let (v1,va,...,Vy) be an or-
dered sequence (an n-tuple) of elements of V.. There exists a unique linear trans-
formation T : F™ — V such that T(e;) = v; for 1 <i < n. Also, if S denotes the
set {vi,...,vp}, then im(T) = span(S).

PROOF. Any element x € F™ can be uniquely written as a linear combination
of the elements of the standard basis {ej,...,e,} in the form

X =T1€1 + X2€2 + -+ + Tpen.

Indeed, it is easy to see that the only z; which will satisfy this equation are the
ones that occur as entries of the matrix x.
Then, we define

T(x) =x1Vy + Tavy + - + T, Vpy.

Now we need to show that the function T" defined by the above formula is linear.
So, let x and y be two elements of F'™ and let a,b € F. Then we see that
n
ax + by = Z(afﬂi + by;)e;.
i=1
As there can be only one way ax + by can be written as a linear combination of the
e;, we see that

T(ax + by) = Z (az; + by;)v;
i=1
=a (Z xiei> + b <Z y,-ei)
=aT'(x) + bT(y).

Thus, T is linear.

Now we need to show that T is unique. Suppose 7T : F™ — V is another linear
transformation with the same properties. Then, given any x € F", we first write x
as a linear combination of the e; as above and then compute

Tl(X) = Tl(Z xiei) = 2 xiTl(ei) = Z Xr;V; = T(X)
i=1 i=1 i=1

This shows that 77 = T. Thus T is the only linear transformation with the given
property.

Now we first show that that im(T) < span(S). Suppose x € im(T). Thus,
there exists some a = [ay,...,a,]" in F™ such that T'(a) = x. Asa =), ae;,
we see that

X = T(a) = T(Z aiei) = Z aiT(ei) = Z a;Vj;.

n
i=1 i=1 i=1
This shows that x € span(S). As x € im(T) was arbitary, we see that im(T) <
span(S).

Now we show that span(S) < im(T). Suppose x € span(S). Thus, there exist

ai,...,a, such that x = 3" | a;v;. Then, if a = }" | a;e;, we see that
n n n
T(a) = T(Z aiei) = Z aiT(ei) = Z a;v; = X.
i=1 i=1 i=1

As x € span(S) was arbitrary, we see that span(S) < im(T). O
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ExaMpPLE 16.10. The above result is particularly obvious when V is equal
to F™. Indeed, suppose we are given m vectors vi,...,v,. Then the required
transformation 7" taking e; to v; is exactly the one associated with the matrix A
which has v; as its i-th column.

PROPOSITION 16.11. Let V' be a vector space and let (vy,...,vy) be an n-tuple
of elements of V.. Let T be the unique linear map from F™ to V such that T'(e;) = v;
for 1 <i < n. Then the set S :={vy,...,vn} is linearly independent if and only if
ker(T) = {0}.

PROOF. Suppose ker(T) # {0}. Then, there exists a vector a = [aq,...,a,]"
in F™ such that T'(a) = 0, but a # 0. But, we see that a = > | a;e;, and hence,
by definition,

T(a) = Z a;T(e;) = Z a;v;.

Thus, Z?Zl a;v; = 0. But as a # 0, we must have a; # 0 for some i. Thus,

n
Z a;V; = 0.
i=1

This is a non-trivial linear relation between the v; and hence they are not linearly
independent. Thus, if the set {vi,...,v,} is linearly independent, we must have
ker(T) = {0}.

Conversely, suppose that the ker(T) = {0}. Suppose that the v; are not linearly
independent and so there exists a non-trivial linear relation

n
Z a;V; = 0.
i=1

Then, if we set a = >, | a;&; = [a1,...,a,]", we see that T'(a) = 0. However as
the given linear relation is non-trivial, there is some a; # 0 and hence a # 0. This
contradicts our assumption that ker(T) = {0}. Thus, we see that the v; must be
linearly independent. O

We have a corresponding result for spanning sets.

PROPOSITION 16.12. Let V' be a vector space and let (vy,...,vy) be an n-tuple
of elements of V.. Let T be the unique linear map from F™ to V such that T'(e;) = v;
for 1 <i<n. Then the set S :={vy,...,v,} is a spanning set of V if and only if
m(T)=V.

PROOF. We saw in Proposition 16.9 that im(T) = span(S). Thus, we see that
S is a spanning set if and only if im(T) = span(S) is equal to V. O

We will put the last two propositions together into a rather neat criterion or a

set to be a basis:

COROLLARY 16.13. Let V' be a vector space and let (v1,...,vy) be an n-tuple of
elements of V. Let T be the unique linear map from F™ to V such that T'(e;) = v;
for 1 <i<n. Then the set S := {vy,...,v,} is a basis of V if and only if T is an
isomorphism of vector spaces.

PROOF. This is an immediate consequence of Proposition 16.11 and Proposition
16.12. |

In the next lecture, we will be able to resolve Question 16.8.



LECTURE 17

Dimension

We look at an example which illustrates the core idea behind Proposition 16.9.

EXAMPLE 17.1. Let vy, Vs, vs € R? be as follows:

a[i] el el

Let wi, wg, ws in R? be as follows:

3 1 6
W1 = 2 Wo = 1 W3 = 0
0 1 -2

Does there exist a linear transformation 7' : R?> — R® such that T(vy) = wi,
T(ve) = wo and T'(vs) = ws?

Observe that vi + 2vy = v3. However, wy + 2wy # wg. Clearly, this implies
that no such 7" can exist.

More generally, suppose V and W are vector spaces and let vi,...,v, € V and
wi,...,W, € W. Suppose there exists a linear transformation T': V — W such
that T'(v;) = w; for all 2. Then if we have a linear relatoin

a1vy + asva + ... an vy =0,

we must also have
a1w1 + agwso + ... ap,w, = 0.

Thus, in informal terms, we may say the existence of such a transformation 7" implies
that every linear relation satisfied by v1,..., vy is also satisfied by w1, Wa, ..., W,.
However, note that the converse need not be true.

There is one obvious relation satisfied by the v;, namely the one in which all
a; = 0. This is the trivial relation. Clearly, this relation is also satisfied by the
w;. However, any other relation satisfied by the v; imposes a condition on the wy;,
which they must satisfy if the transformation T is to exist. However, suppose that
there are no non-trivial relations on the v;. In other words, suppose that vy,...,v,
are linearly independent. Would that guarantee the existence of the transformation
T7? Yes, it would. However, in general this transformation need not be unique. See
the following example.

EXAMPLE 17.2. Let e1,es € R? be as follows:

0
e = 0 €y = 1
| 0 ] 0
Let wq, wo in R3 be as follows:
[3] 1
w1 = 2 Wo = 1
| 0 ] 1

Again, we ask whether there exists a linear transformation T : R® — R3 such that
T(el) = Wi, T(GQ) = Wg?
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Actually, it turns out that there are infinitely many such linear transformations.
Indeed, let ez = [0 0 l]tr. Choose any element w3 of R3. Then, we can easily
construct a linear transformation 7" such that T'(e;) = w; for ¢ = 1,2,3. This is
the linear transformation T'(x) = Ax where A is the 3 x 3 matrix which has w; as
its i-th column. As wjs was arbitrary, clearly there are infinitely many such linear
transformations.

A careful examination of the last example reveals why T" was not unique. Pick-
ing the images of v; and vy only fixes the images for all the vectors that are in
the span of vi and vo. However, for any v which is not in the span of these two
vectors, the image can be chosen freely, which allows us to create infinitely many
transformations having the required property. So, if one wants to ensure that T
is unique, the v; must also span V. Hence, they must form a basis of V. This is
exactly what we have in Proposition 16.9 since the “standard basis” is actually a
basis of F™. In general, the analogue of Proposition 16.9 will hold for any basis.
This is proved below:

PROPOSITION 17.3. Let V and W be vector spaces. Let (vi,va,...,vy) be
an ordered sequence (an n-tuple) of elements of V' such that the set {vi,...,v,}
is a basis of V.. Let (w1, Wa,...,wy) be an ordered sequence of elements of W.

There exists a unique linear transformation T : F™ — V such that T(v;) = w; for
1 <i<n. Also, if S denotes the set {vy,..., vy}, then im(T) = span(S).

PRrROOF. As usual, let ey, ..., e, be the standard basis of F™. By Corollary
16.13, there exists a unique isomorphism S; : F™ — V such that Si(e;) = v;
for 1 < ¢ < n. By Proposition 17.3, there exists a unique linear transformation
Sy : F™ — W such that Ss(e;) = w; for 1 < ¢ < n. Let Sfl denote the inverse
of S;. Then, we define T to be the composition S5 0 S;'. In other words, T(v) is
defined to be S3(S~1(v)) for every v € V. Then, it is easy to see that T'(v;) = w;
for every i.

To see the uniqueness, suppose that T : V' — W is some other linear transfor-
mation which satisfies T3 (v;) = w; for every i. Then, consider the linear transfor-
mation T7 0 S7 : F™ — W. We see that

T1 o Sl(ei) = Tl(Sl(eZ)) = Tl(Vi) = W;

for all .. However, we know that Sy is the unique linear transformation from F™
to W such that S(e;) = w;. Thus, we must have Sy = Ty 0 S1. Thus S3 o Sfl =
TioS;0 Sfl =Ty. Thus T} = T. This proves the uniqueness of T'. O

We will now use the results from the previous lecture to define the notion of
dimension and to resolve Question 16.8.

LEMMA 17.4. Let m and n be two positive integers such that m > n. Let
T :F™ — F™ be a linear transformation. Then T cannot be injective.

PrOOF. We know that there exists an n x m matrix A such that T'(x) = Ax.
Let X1,...,X,, be variables and let X be the column matrix defined by

X=[Xi Xo - Xpn]

Consider the matrix equation AX = 0. This is essentially a system of n linear
equations in m variables. If we apply the row reduction algorithm to this system,
there must be at least one free variable in the row reduced echelon form because
m > n. This means that this system has at least one non-trivial solution, i.e. a
solution in which at least some X; takes a non-zero value. This implies that there
exists some x € F™ such that x # 0 and Ax = 0. Thus, ker(T) is not the zero
space. By Lemma 15.3, this implies that T is not injective. O

tr

This lemma has a useful corollary:
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COROLLARY 17.5. Let m and n be positive integers such that m # n. Then F™
and F™ are not isomorphic.

PrROOF. We may assume without loss of generality that m > n. (If this is not
so, i.e. if n > m, we may simply interchange the role of m and n in this argument.)
Then, Lemma 17.4 shows that there is no injective linear transformation from F
to I, In particular, there is no isomorphism from F™ to F™. O

THEOREM 17.6. Let m be a positive integer. Let V be a vector space having
a basis {vi,...,vpy}. Let n be another positive integer and let {wy,...,w,} be a
linearly independent set in V. Then n < m.

PROOF. Suppose that n > m. We will obtain a contradiction.

Let eq,..., e, be the standard basis of F'™ and let fy,...,f, be the standard
basis of F™. Then, we know from Corollary 16.13 that there exists a unique iso-
morphism S : F™ — V such that S(e;) = v; for 1 < ¢ < m. By Proposition
16.9, there exists a unique linear transformation T : F™ — V such that T(f;) = w;
for 1 < ¢ < n. By Proposition 16.11, as {wy,...,w,} is linearly independent,
ker(T) = {0}. By Lemma 15.3, we see that T is injective. Then, the linear trans-
formation S~! o T : F™ — F™ is injective. (Exercise: Do you see why this linear
transformation is injective?)

Fn

SiloTl K
Fm S LW
However, we know from Lemma 17.4 that this linear transformation cannot be
injective. This is a contradiction. Thus, we must have n < m. ]

The following corollary is an immediate consequence:

COROLLARY 17.7. Let V be a finite dimensional vector space. Then, any lin-
early independent set in V is finite. In particular, any basis of V is finite.

PRrROOF. Since V is finite dimensional, it has a finite spanning set S. By The-
orem 16.7, there exists a subset of S which is a basis of V. Thus, V has a finite
basis. Suppose that it has a basis consisting of m elements where m is a positive
integer. Then, Theorem 17.6 shows that any linearly independent subset of V' can
have at most m elements. Thus, any linearly independent subset of V' is finite. O

THEOREM 17.8. Let V be a finite dimensional vector space. Any two bases of
V' have the same number of elements.

PROOF. Let By and By be two bases of V. By Corollary 17.7, both B; and By
are finite sets. Suppose B; has m elements and By has n elements. By Theorem
17.6, we see that m < n and n < m. Thus m = n. O

Finally, we are now able to define the dimension of a finite dimensional space!

DEFINITION 17.9. The dimension of a finite dimensional space V' is the number
of elements in any basis of V.

As promised, we also answer Question 16.8.

Constructing a basis by expanding a linearly independent set:

We will show that in a finite dimensional vector space, any linearly independent
set can be expanded to a basis. (This result is actually true even for spaces which
are not finite dimensional.)

Let n be an integer and let V' be an n-dimensional vector space. Let S be a
linearly independent subset of V. Suppose that |S| = m. We will use induction to
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construction a sequence Sy < S; < Sy ... of subsets of V with Sy = S and show
that this sequence actually must terminate at some finite stage to give a basis of V.

If S is a spanning set, it is also a basis. If not, we find a non-zero element v, of
V such that vy ¢ span(S). We define S; = S U {vy}. We know from Lemma 16.1
that S; is a linearly independent set.

Now, suppose that the linearly independent set S; has been constructed for
some integer k. If Sy spans V, then Sy is a basis of V. If not, there exists some
Vi+1 € V such that viy1 ¢ span(Sg). We define Sy = Sp U {vii1}. We know
from Lemma 16.1 that S is a linearly independent set.

Note that |Sk| = k + m for every k. However, as Sy is a linearly independent
subset of V', by Theorem 17.6, we must have k + m < n. Thus, this process can
continue only for n — m steps and S,,_,, will actually be a basis of V. We record
our result as follows:

THEOREM 17.10. Let V be a finite dimensional vector space. Let S be a linearly
independent subset of V. Then, there exists a basis B of V' such that S < B.



LECTURE 18

Matrix representation with respect to a basis

Let V be a vector space. Let {vy,...,v,} be a basis of V. Let v be any element
of V. By Proposition 15.12 we know that there exist unique elements a1, ...,a, € F
such that

V=a1Vy tasve + -+ a,vy.

Thus, the sequence of elements of F' (aj,...,a,) can be said to be the list of coor-
dinates of the element v with respect to the basis {vi,...,v,}. However, note that
the order in which the elements vq,..., v, are listed does matter. For instance, if
we were to list these elements as vy, vy, Vvs,...,v,, then the associated sequence
of coordinates becomes (as,ai,as,...,a,). Thus, we should be working with an

ordered basis (i.e. a basis with a given fixed order). If fix an order on the basis,

s . tr
such as (v1,...,v,), then we can associate the column matrix [a1 a2 ... an]

to the element v. This gives us a bijection between the vector space V and the set
F™. However, the column matrix [a1 as ... an]tr depends on the choice of the
ordered basis (v1,...,v,). We will now explore how this column matrix associated
to v changes if a different ordered basis is used.

Above, the ordered basis has been represented by an n-tuple (i.e. a list of n-
elements) (vy,...,v,). It will be more convenient to look at this n-tuple as a an
1 x n matrix (i.e. a “row matrix”) with entries from the vector space V, for reasons
that will soon become clear. To this end, we introduce the notion of matrices with
vector entries.

DEFINITION 18.1. Let V be a vector space. Let m and n be positive integers.
An m xn matriz A with entries from V is a collection of mn elements of V' arranged
in a rectangular array as follows:

Vil e PPN an

The element in the i-th row and j-th column is called the (7, j)-entry of the matrix
and is denoted in the above representation as v;;. The above matrix may also be
written in the short form (v;;); ; if the number of rows and columns is understood.

The set of all m x n matrices with entries from V will be denoted by M, xn (V).

REMARK 18.2. Recall that for positive integers m and n, the set M, (F) of
m X n matrices having entries from F' forms a vector space with the obvious notions
of addition and scalar multiplication. It is easy to see that M,,x, (V') too is a vector
space.

79
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EXAMPLE 18.3. Let us take V = R2. Then an example of a 2 x 3 matrix with
entries in V would look like the following:

5] Lo] [o
HErH

Of course, this looks cumbersome. Normally, we will give the 2 x 1 matrices inside
the big matrix some names like vi1,vis, etc. and write this matrix as

Vii Viz2 Vi3
V21 V22 Va3

which looks a little better, but means the same thing.

Of course, it is not necessary that we will work only with vector spaces of the
form R?, R3, etc. We may also be working with an abstract vector spaces V, in
which case the matrix will not look like the first one in this example.

Obviously, for any positive integers m and n, the set of all m x n matrices
with entries from V forms a vector space. However, it is clear that we cannot
meaningfully define the product of two matrices with entries from V since the
product of two vectors is not defined. On the other hand, using scalar multiplication,
we can multiply a matrix having entries from V with a matrix having entries from
F, as long as their shapes are compatible.

CONVENTION 18.4.

(a) In general, we will denote matrices with entries in a vector space V' with
capital letters in a calligraphic font, such as A, B, etc. Matrices with
entries in a field F' will be denoted with ordinary capital letters, such as
A, B, etc.

(b) If V is a vector spaces and v, is in V, the 1 x 1 matrix [V] will simply be
written as v (without the square brackets). This abuse of notation will be
seen to be useful below.

DEFINITION 18.5. (Definition of matrix product) Let V be a vector space and
let A = (v;);; be an m x n matrix having entries from V. We will define its
product with matrices having entries from F' as follows:

1) Let B = (bjr);x be an n x p matrix with entries in F. The product AB
ik)j,
is an m x p matrix X' = (wy;); , having entries in V' such that

n
Wik = Z bjkvij.
j=1

(2) Let C = (cki)k,; be an p x m matrix with entries in F. The product CA
is a p x n matrix X = (wy;)x,; having entries in V' such that

m
ij = Z Ckivij~
i=1
LEMMA 18.6. The above product satisfies the associative property and also the
distributive property with respect to addition of matrices.

PROOF. (The proof is left as an an easy exercise.) O

Generally, we will not be interested in very big matrices having entries in V.
Indeed, we will only consider row matrices (i.e. matrices having a single row) with
entries in V. The most common use will be the following:
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DEFINITION 18.7 (Ordered basis). Let n be a positive integer. Let V be a an
n-dimensional vector space. An ordered basis of V' is a 1 x n matrix

B=[vi va - vg]
having entries in V' such that {vy,...,v,} is a basis of V.

EXAMPLE 18.8. Recall that {e;,es,e3} denotes the standard basis of R? (so
that e; has 1 in the i-th row and 0’s elsewhere). Then,

[91 €2 93]
is an ordered basis of R3, and so is
[es e e1].
Note that these ordered bases are different even though they have the same entries.

ExXAMPLE 18.9. The 1 x 2 matrix
1 1
1 -1

DEFINITION 18.10. Let n be a positive integer. Let V be an n-dimensional
vector space. Let B=[vi -+ vy]| be an ordered basis of V. Let v any element
of V. We write v as a linear combination of vy,...,v, as follows:

is an ordered basis of R2.

V =a1V] +asvy + -+ apvy.
Then, we define the matriz representation of v with respect to B by
a
Mp(v) =
Qn
(This is well-defined because the a; are uniquely determined by v.)
With the notation in the above definition, we see that
ay
B-Mg(v) = [V1 Vn]-
Qn
= [a1V1 +--+ anvn]
~ [v].

However, by Convention 18.4, Part (b), we are choosing to write the 1x 1 matrix
[V] as just v. Thus, we have proved the following rather elegant result.

LEMMA 18.11. Let V be a finite dimensional vector space. Let B be an ordered
basis of V' and let v be an element of V.. Then,

v =B Mg(v).
We will now strengthen this result as follows:

THEOREM 18.12. Let n be a positive integer. Let V' be an n-dimensional vector
space. Let B be an ordered basis of V. Then, we define functions ¢ : V. — F™ and
Y F" >V by

p(v) = Mp(v)
for every veV, and

V) =B
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for every x € F™. Then, ¢ and v are linear transformations. Also, ¢ and ¢ are
inverses of each other and thus define an isomorphism of vector spaces between V
and F™.

PRrROOF. Before we prove the linearity, we will show that ¢ and v are inverses
of each other. This will show that they set up a bijection between V and F™
(though we will still need to check the linearity after that to establish that these
are isomorphisms of vector spaces). For v € V', we have

P(¢(v) = B-¢(v) =B Mp(v) =v

where the last equality follows from the previous lemma. Thus, ¥ o ¢ is the identity
function on V. On the other hand, suppose x € F™. Suppose

T

L

Then
Y(x)=B-x =21V + -+ T,V

By definition, we have

T

I
o

Mp(z1vi+ - + 2y vp) =

Tn

This shows that ¢ o ¢ is the identity function on F™. Thus ¢ and v are inverses of
each other, and are hence bijections.

Suppose v and w are elements of V' and let a,b e F. We first write v and w as
linear combinations of vy,...,v,:

v=aVvy+- - -+a,vy

w="bvy+- - +b,vy,
Then, we have
av+bw=(a-a1+b-by)vi+ -+ (a-an+b:by)vy.
By definition, we have the following equalities:
a b1 a-a1+b-b

Mp(v) = | : Mg(w) = | : Mg(av + bw) = :
an by, a-a, +b-b,

Thus, we see that Mg(av + bw) = aMp(v) + bMp(w) and hence
d(av + bw) = ad(v) + bo(w).

This shows that ¢ is linear, and hence is a vector space isomorphism. O

REMARK 18.13. The fact that the map  is a bijection implies that if x and
y are in F™ such that B-x = B -y, then x = y. Thus, it is as if we can “cancel”
B from the equation B-x = B-y. Of course, one should understand that this
“cancellation” is not really “division by B”. Instead, it just means that we are
applying the function ¢ to both sides of the equation and applying Lemma 18.11.

We will now generalize this construction a little further.
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DEFINITION 18.14. Let n be a positive integer and let V' be an n-dimensional
vector space. Let B be an ordered basis of V. Let k be a positive integer and let

A=[wr - wi

be a 1 x k matrix having entries in V. Then, we define the matriz representation
of A with respect to B to be a n x k matrix, denoted by Mp(A) such that its i-th
column is equal to Mg(w;).

ExaMPLE 18.15. Let us take V = R2 let B = [e1 eg] be the standard basis
with the usual order. Suppose

Then,

Now consider the ordered basis

e~ |3 [2]

Then, we observe the following equalities:

3 [1] 1

H =92. i +1- 1]
[2] [1] 1]
0| =1- i +1- 1]
[3] (1] [ 1]
H =3. i +0- 1]

Thus,
2 1 3
ExaMPLE 18.16. The most important use of this concept will be when A is
taken to be an ordered basis. So, suppose V is an n-dimensional vector space and
By and By are two ordered bases of V. Then Mg, (B2) and Mg, (B1) are both n x n
matrices. These matrices will be very useful in result that we will prove below.
For example, consider the ordered bases

and )
SRR
of R2. Then,
Mp(C) = E _11]
and

e - [ 2]

The following result is a generalization of Theorem 18.12:
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THEOREM 18.17. Let n be a positive integer and let V be an n-dimensional
vector space. Let k be a positive integer. Let B be an ordered basis of V.. Then, we
define functions ¢ : Mixp (V) = Muxi(F) and ¢ : Myxip(F) = My« (V) by

P(A) = Mp(A)
for every A€ Mi«x(V), and
P(X)=B-A

for every X € My« (F). Then, ¢ and ¢ are linear transformations. Also, ¢ and ¢
are inverses of each other and thus define an isomorphism of vector spaces between
Adixk(Vﬁ and Alnxk<ﬁv-

PROOF. This proof is very similar in structure to the proof of Theorem 18.12
and so I will merely sketch it.

Suppose B =[vi -+ vu]. Let Ae My(V). So
A= [W1 e Wk]
for wy,...,wi € V. We write each w; as a linear combination of the elements of
the basis.

W; = a1Vl + + + apiVp

Thus, by definition, we have

a1 o G1g
P(A) = Mp(A) =
an1l e Ank
Thus,
Y(p(A)) = B- Mp(A)
aii a1k
=[v1 \a :
an1 Ank

It is easy to see that the matrix product above is equal to A. Thus, we see that

P(p(A) = A.
The rest of the proof is left as an exercise. To complete this proof, you need to
do the following:

e Show that ¢p(¢)(X)) = X for any X € M,,«r(F). This shows that ¢ and
are inverses of each other and are thus bijections.

e Show that ¢ is linear. (Look at the corresponding argument in the proof
of Theorem 18.12.)

O

REMARK 18.18. The analogue of Remark 18.13 also holds in this situation. In
other words, if X and Y are elements of M,,«x(F') such that B- X = B-Y, then we
can apply ¢ to both sides to get X =Y.

Finally, we are able to answer the question raised at the beginning of this
lecture.

THEOREM 18.19. Let V be a finite dimensional vector space. Let By and By be
two ordered bases of V.. Let v e V. Then,

Msg, (V) = Mg, (Bl) - Mpg, (V)
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PROOF. We have the equalities
v =By Mg, (v)
and
v =By Mg, (v)
= (By - Mg, (B1)) - Mg, (v)
= By - (Mp,(By) - Mg, (v)) .
By applying Remark 18.13 to these equations, we see that
Mg, (v) = Mp,(B1) - Mg, (v)
as required. O

EXAMPLE 18.20. We consider the bases B and C of R? defined in Example
18.16. Let v € R? be given by
v— [;] .
What is Mc(v)?

The straightforward way to do this is to simply write v as a linear combination
of the vectors appearing in C. The required coefficients can be found by solving a
system of linear equations.

Using the above theorem, we are able to do this computation a little faster.
Observe that the given 2 x 1 matrix is actually the matrix representation of v with
respect to the standard basis. Thus,

Mg(v) = H
Thus,
Mc(v) = Mc(B) - M(v)
T2 120t
12 —12] 5
13
=5
If By and By are ordered bases of a vector space V, the matrices Mg, (B2) and
Mg, (Bs) are called the “change of basis” matrices since they allow us to go back

and forth between the matrices representations of a vector with respect to the two
bases. We will note one important property of these matrices.

PRrROPOSITION 18.21. Let V' be a finite dimensional vector space. Let By and
Bs be two ordered bases of V. Then, the matrices Mg, (Bz) and Mg, (B1) are mul-
tiplicative inverses of each other. (In particular, these two matrices are invertible.)

PrROOF. Let n = dim(V) and let I, denote the n x n identity matrix. We
observe that

By 1, =B
= By - Mp,(B1)
= (B1- Mg, (Bz)) - Mp,(B1)
= By - (Mg, (Bz) - Mg, (B1)) .
Thus, by Remark 18.18, we see that
I, = Mg, (Bs) - Mg, (B1).
This proves the result. O
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Matrix representation of a linear transformation

Let V be an m-dimensional vector space and let W be an n-dimensional vector
space. Let
B=[vi - V]
and
C=[wi - wy
be ordered bases of V and W respectively.
Let T : V — W be a linear transformation. We saw in Theorem 18.12 that we
have linear maps ¢ : V — F™ and ¢ : F™ — V given by
¢(v) = Mp(v)
and
Yp(x) = B-x.
These two linear transformations are actually inverses of each other. Similarly, we

have linear transformations ¢¢ : W — F™ and ¢ : F™ — W given by similar
formulas. Thus, we have the following diagram

¢
V:’BF’”

l VB

T

%, m
WTF

All the functions in the above diagram are linear transformations. Thus, we obtain
a linear transformation from F™ to F™ defined by ¢¢c o T o 5.

Any linear transformation from F to F™ is given by left-multiplication by an n xm
matrix. We will denote this matrix by MF(T) and call it the matriz representation
of T with respect to B and C. Thus, the above diagram can also be written as

¢
V:’BF’”

Tl Ve J/)O—)MCE (T)x

w L} Fm
e

First we observe that the above diagram is an example of a “commutative
diagram”, which means that if we go from one point in the diagram to the other
following different paths, the result is the same.

For instance, in this diagram, there are two sequences of functions that lead
from V to F™:

(1) First go from V to F™ using ¢p, and then go from F™ to F™ using
¢c o T op. This gives us the composition (¢¢ o T o 1Y) o dp.
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(2) First go from V to W using T'. and then go from W to F™ using ¢¢. This
gives us the composition ¢¢ o T'.

As 1 o ¢ is the identity on V, it is easy to see that these two compositions are
actually the same.

Let us understand what this means. Suppose we start with an element v € V.
The first path in the diagram (going to the right and then going down) gives us
the element MZ(T) - Mp(v). The second path (going down and then going to the
right) gives us the element Mc(T'(v)). Thus, we have

Mac(T(v)) = ME(T) - Mp(v).
Multiplying by the row matrix C on both sides gives us
T(v)=C-ME(T)- Mp(v)

This should be seen as the analogue of Lemma 18.11 for linear transformations.
It tells us the relationship between the linear transformation T and its matrix
representation. We record it for future reference:

LEMMA 19.1. Let V and W be finite dimensional vector spaces with ordered
bases B and C respectively. Let T : V. — W be a linear transformation. Then,

T(v) = C- ME(T) - Ms(v).

As in the previous lecture, we would now like to understand how the matrix
representation of a linear transformation changes if the basis is changed. However,
note that the matrix representation of a linear transformation depends on a choice
of basis in both the domain and the codomain. Thus, we need to obtain a formula
that can handle changes of both these bases.

THEOREM 19.2. Let V and W be finite dimensional vector spaces. LetT : V —
W be a linear transformation. Let By, By be ordered bases of V' and let C1, Co be
ordered bases of W. Then,

ME(T) = Mc,(C1) - MEN(T) - Mg, (B).
PROOF. Let v be any element of V. By Lemma 19.1, we know that
T(v) = Co- ME*(T) - Mg, (v).

Similarly, we have

T(v) =Cy - MEN(T) - Mg, (v)

= (€2 M, (€1)) - MEN(T) - (Mg, (Bz) - My, (v)) -
Thus, we have two expressions for T'(v). Equating them and then “cancelling out
C>” by using Remark 18.13, we see that
Mc?; (T) ’ MB2 (V) = MC2 (Cl) ’ M(?ll (T) : MBI (BQ) ’ MB2 (V)

This equality holds for any element v of V.

Suppose dim(V) = m. As v varies over all elements of V, the matrix Mg, (v)
varies over all elements of F*. Thus, the above equation shows that for any element
x of F'™, we have

ME(T) - x = Mc,(Cr) - MEN(T) - M, (Bs) - x.
If we take x to be the element e; in the standard basis of F™, we get that
ME(T) - e; = M, (C1) - MEN(T) - Mg, (Bs) - e;.

Here, the left hand side of the equation is the i-th column of the matrix Mész 2(T)

and the right hand side is the i-th column of the matrix M, (C1) ~Mé311 (T)- Mg, (Bs).
Letting ¢ vary from 1 to m, we see that these two matrices have identical columns,
and hence must be equal. This proves the result. O



LECTURE 20

Further comments on change of basis

Changing bases successively:
Let V be a finite dimensional vector space and let By, By, Bs be three ordered
bases of V. Let v e V. Then, we know that

v = BsMpg, (v).
On the other hand
v = B1 Mg, (v)
= By - Mg, (B1) - Mg, (V)
= B3 - Mp,(B2) - Mp,(B1) - Mg, (v).

Comparing these two expressions for v and “cancelling out B3” on the left using
Remark 18.13, we see that

Mg, (v) = Mg, (Bz) - Mp,(B1) - Mg, (v).
However, we also know that
Mg, (v) = Mg, (B1) - Mg, (v).
Thus, we have
Mg, (By) - M, (v) = Mp,(B2) - Mp,(B1) - Mg, (v).

This equation holds for all ve V.
Now, suppose dim(V') = m. Then, as v varies over all elements of V', the matrix
Mg, (v) varies over all elements of F™. Thus, we see that for any x € F™, we have

MBg(Bl) X = MBs(BQ) : MBz(Bl) " X.

Now, an argument similar to the one used in the proof of Theorem 19.2, we see that
the two matrices Mp,(B;1) and Mp,(B2) - Mp,(B1) are equal. Thus, we have proved
the following important result:

THEOREM 20.1. Let V' be a finite dimensional vector space and let By, Bs, B3
be ordered bases of V. Then,

MBa(Bl) = MBJ(BQ) : MBz(Bl)'
Here is an example of how this theorem can be useful:

EXAMPLE 20.2. Let us consider two ordered bases of R? given by

s | 4]
- |l Bl

We would like to compute Mg, (B2). In order to do this, we need to compute the
matrix representations of every element of By with respect to By. For this, we will
need to solve a system of linear equations. This needs to be done for both elements
of By, and thus we have to solve two systems consisting of two equations each. If

and
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we had been working with an n-dimensional space, such a problem would require us
to solve n systems, each containing n linear equations. However, the above formula

provides us with an easier way.
1 0
s~ {s] [

Let
be the standard ordered basis of R2. Then, we easily see that
1 1
MS(BI) = |:1 1:|
2 1
® -3 4

Mg, (B2) = Mg, (S) - Ms(Bs)
= Ms(B1)~! - Ms(Ba)

o172 1
I 3 5|
Characterizing “change of basis” matrices:

We have seen before that the “change of basis” matrices are invertible. We will
now show that any invertible matrix is a change of basis matrix.

and

Thus,

EXERCISE 20.3. Let V' be an n-dimensional vector space. Let B be an ordered
basis. Let A be an invertible matrix. Show that B - A is an ordered basis of B.

(Note that we already know that if B - A is a basis of V, then A is invertible!
Do you understand why?)

SOLUTION. Let
B = [v1 vn]
and let
B-A=[wi -~ wi.
Suppose A is invertible. Thus, there exists an n x n matrix B = (b;;)i, j such
that AB = I,,. Thus,
B=B-1,=(B-A)-B.
The product (B-A) - B) is a 1 x n matrix, the (1, j)-entry of which is > | b;;w;.
However, the above equation tells us that this matrix is actually equal to the 1 x n
matrix B, the (1,7)-entry of which is just v;. Thus, v; is in the span of the set
{w1,...,wy,}. As this is true for all j, we see that span(wy, ..., w,) contains every
v;. Thus, is equal to the whole of V. We conclude that the set {wy,...,w,} is a
spanning set of V. Since it has n elements, it is a basis of V. Thus, B - A is an
ordered basis of V. O
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Rank-Nullity Theorem

THEOREM 21.1 (Rank-Nullity theorem). Let V., W be vector spaces and let T :
V — W be a linear transformation. Then,

dim (V') = dim(ker(T)) + dim(im(T)).

The number dim(im (7)) is sometimes called the rank of T and dim(ker(T)) is
called the nullity of T.

PRrOOF. Let dim(V) = n and let dim(ker(T)) = m. Then, we know that
m < n. Let {vy,...,v,,} be a basis of ker(T). Then, the set {vy,...,v,} is a
linearly independent subset of V. Any linearly independent subset is contained in
some basis. Thus, we can expand this set to a basis {vi,..., Vi, Vint1,...,Vn} of
V.

We will show that the set {T'(Vint1, ..., T (vy)}, which contains n—m elements,
is a basis of ¢im(T"). This will prove complete the proof of the theorem.

Let w € im(T). Thus, there exists v € V such that T'(v) = w. As {vy,...,vp}
is a basis of V, there exist aq,...,a, € F such that

V=a1Vy + - -anVp.
Thus
w=T(v)
=T(a1vi + - apvy)
=a1T(vy) + - anT(vy).
As T(v;) =0 for 1, < i < m, we see that
W = am1 L (Ving1) + - + a,T(vy).

This shows that the set {T(vyi1,...,T(vy)} spans im(T).
It remains to be proved that the set {T'(vpy41,...,T(vy)} is linearly indepen-
dent. Suppose there exist elements a1, ---,a, € F such that

am+1T (V1) + -+ a,T(vy) = 0.

Thus,
T(am+1vm+1 +--+ anvn) = 07
which implies that a;,41Vmt1 + -+ + apvy € ker(T). As {vi1,..., vy} is a basis of
ker(T), there exist elements a, ..., ay, € F such that
aivi+ ...+ amVim = QGm41Vms1 + -+ apVp.
Thus,
a1vi+ ...+ @V + (—=@mi1) Va1 + - + (—an) vy, = 0.

As {v1,...,v,} is a linearly independent set, this implies that a; = 0 for all 4,
1 < ¢ < n. In particular, we have a; = 0 for all 7, 1 < ¢ < m. This shows that the
set {T(Vim+1,---,T(vy)} is linearly independent. O
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EXAMPLE 21.2. Consider the morphism 7" : R? — R given by T'(x) = Ax where
A= [2 1]. Then it is clear that ém(T") is not the zero subspace of R. For instance,

we can see that T’ ([(1)] = 2 # 0. Thus, as any non-zero subspace of R is equal to

R, we see that ¢im(T") = R. Thus, dim(im(T")) = 1. Then, the above theorem shows
that ker(dim(7)) = 1. We already know from co-ordinate geometry that the set of

all points [;] such that 2z + y = 0 is a line in the plane.



LECTURE 22

Sums of subspaces

DEFINITION 22.1. (Sums of spaces) Let V be a vector space and let {W;}cs be
a family of subspaces of V' (where I is any indexing set). The sum of the subspaces
in this family is defined to be the subspace

Z W; = span(U W;)

el el
of V. If I is a finite set, say I = {1,...,n}, we will write the sum of the subspaces
W;as Wy +Wo + -+ W,.

The following description of the sum may be more useful:

LEMMA 22.2. Let V be a vector space and let {W;}ier be a family of subspaces
of V.. Then

Z W, = {Z w; : w; € W, and w; = 0 for all but finitely many i}.
iel iel
Note that the condition that w; = 0 for all but finitely many ¢ is imposed only
to ensure that the expression ), , w; makes sense. If I happens to be a finite set,
this second condition is not relevant and then we can say that >, ; W; is simply
the collection of all elements of the form },_, where w; € W; for every i.

PROOF. Let us denote the set on the right hand side of the above equation by
W. Thus,

W = {Z w; : w; € W; and w; = 0 for all but finitely many 4}.
el
We first claim that W is a subspace of V. Suppose vi and vy are elements of W.
Then, for j = 1,2, we have
v; = Z W,’j

el
for some w;; € W; such that w;; = 0 for all but finitely many ¢. Let a;,a2 € F.
Then,
a1vy + agve = Z(alwﬂ + agw;s).
el

We observe that for every i, a;w;1 + aow;o € W;. Thus, the right hand side of
the above equation clearly represents an element in W. As ay,a2 € F and W were
arbitrary, we see that W is a subspace of V.

Clearly, W; c W for every i € I. Thus, |, ;
span(|J;c; Wi is the intersection of all the subspaces of W which contain | J
it follows that > .., W; < W.

On the other hand, every element of the form »},_, w;, with w; € W; for alli € I,
is a linear combination of elements in  J,.; W;. Thus, we see that every element of
W is contained in span(|J;c; Wi = X,c; Wi. Thus, we see that W =3, W;. O

Wi c W. As >, W; =
Wi7

el

iel
ExAMPLES 22.3. We will look at two simple examples, which will illustrate a

crucial issue. In both these examples, we will use the space V = R3. Let e, ey, e3
be the standard basis of R3.
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(1) Let S; = span(e;) (i.e. the z-axis) and Sy = span(ez,es) (i.e. the yz-
plane). Then span(S; U S2) contains span(eq, ez, e3) = V and hence must
be equal to V. Thus, S + S = V. Observe that here dim(S;) = 1,
dim(S2) = 2 and dim(V) = 3. So, dim(V) = dim(S;) + dim(S3). Notice
that, Sl M SQ = {0}

(2) Let Ty = span(ey,ez) (i.e. the zy-plane) and To = span(eq,e3) (i.e. the
zz-plane). Then, by the same argument as above, we see that 71 +T5 = V.
However, dim(7y) = 2, dim(73) = 2 and dim(V) = 3. So, dim(V) >
dim(71) + dim(7%). Here, we observe that T} n Ty = span(e;), which is a
1-dimensional space.

In order to explain this difference, we formulate a new notion which should
remind you of the notion of linear independence of vectors.

DEFINITION 22.4. Let V be a vector space. Let {W;};er be a family of subspaces
of V. Then, we say that the subspaces {W;};c; are independent if the following
condition holds:

If we have an equality > ,_, w; = 0 where w; € W; for each i € I,
then we must have w; = 0 for every i € I.

We will now focus on the case of a family consisting of two subspaces Wy, Ws
contained in a vector space V' and examine what the notion of independence means
in that case.

LEMMA 22.5. Let V' be a vector space. Let Wy, Wy be subspaces of V. Let B
be a basis of W1 and let By be a basis of Wa. Then span(B; v Bg) = Wy + Wa.

PROOF. Any element of W7 + W5 can be written in the form w; + wy where
w1 € Wy and wy € W5, Since By is a basis of W7, wy can be written as a linear
combination of elements of B;. Similarly, wo can be written as a linear combination
of elements of By. This shows that wi + wo can be written as a linear combination
of elements of By U By. Thus, span(B; u By) = Wy + Wa. O

REMARK 22.6. More generally, suppose {W;}.er is a family of subspaces of V
and B; is a basis of W; for every i € I, then span(|J,c; Bi) = >};c; Wi- The proof is
similar to that of the special case proved above. (Exercise: Write the proof in the
general case.)

PROPOSITION 22.7. Let V' be a wvector space. Let Wi and Wy be subspaces.
Then, the following statements are equivalent:

(a) Wy and Wy are independent.

(b) Wl N W2 = {0}

(¢) Let By be a basis of Wy and By be a basis of Wy. Then By n By = & and
B1 v By is a basis for Wi + Ws.

If any of these statements is true, then dim(W7) + dim(Ws) = dim(W; + Wa).

PrOOF. We will prove the equivalence of the statements in three steps.
STEP 1: (a) implies (b).

We assume that (a) is true. Suppose (b) is not true. Then there exists w €
W1 n Wy such that w # 0. Define w; = w and wo = —w. Then wy; € W and
wo € Wy. Clearly wi +wy = 0. Thus, (a) implies that wi; = wg = 0. Thus, w = 0,
which contradicts our assumption. This shows that (b) must be true. Thus, we
have shown that (a) implies (b).
STEP 2: (b) implies (c).

We assume that (b) is true. By Lemma 22.5, we know that B; u B spans
W1+ Ws. As Wy n Wy = {0}, we see that By n By < {0}. However, 0 cannot be
the member of any basis. Thus, B; n By = (.
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STEP 3: (c) implies (a).

Suppose that (c) is true. Suppose that we have an equation w; +wy = 0 where
wi € Wi and wy € Wa. Suppose By = {u;}ier and By = {v;};c;. Then we have
Wi = D,y a;u; and wy = ZjeJ b;v; where all the a; and b; are in F. Thus, we

have the equation
Zaiui + Z ijj =0.

el jedJ
Since By U By is a basis, we see that a; = 0 for all i € I and b; = 0 for all j € J.
Thus wy = wo = 0. This proves (a). Thus (c) implies (a). O

REMARK 22.8. Thus, we have proved that if W7 and W5 are independent, then
dim(Wy + Ws) = dim(W7) + dim(W3). In the next lecture, we will prove that the
converse of this statement is also true.

REMARK 22.9. Proposition 22.7 can be generalized to an arbitrary family
{Wi}ier. The generalized versions of statements (a) and (c) in the proposition
are obvious. However, the generalization of (b) is a bit more subtle. It is as follows:

For every i € I, W; n (Zjel\{i} Wj> = {0}.

Thus, for instance, for a family of three subspaces W7, Ws, W3, independence

is equivalent to

Win <W2 + W3) =Ws5n (Wl + Wg) =Ws3n (Wl + Wg) = {0}
(Exercise: Write the complete statement of the generalization of Proposition 22.7
and prove it.)






LECTURE 23

Direct sums

DEFINITION 23.1. Let V be a vector space. Let Wi, W5 be subspaces of V.
We say that Wi, Wy are complementary subspaces (or that they are complements
of each other) if Wi n Wy = {0} and Wy + Wy = V.

PROPOSITION 23.2. Let V' be a wvector space and let W be a subspace of V.
Then, there exists a subspace W' of V' such that W' is a complement of W.

PrROOF. Choose a basis B of W. Then, B is contained in a basis C of V. Let
W' = span(C\B). The set C\B is a subset of C and is hence linearly independent.
Since it spans W', we see that it is a basis of W’. We have B n (C\B) = & and
B U (C\B) = C. Thus, by Proposition 22.7, we see that W and W’ are independent.
As span(C) =V, we see that W + W' = V. Thus, W’ is a complement of W. O

REMARK 23.3. Note that W does not have a unique complement. The com-
plement constructed in the above proposition depends on the choice of C. As C can
generally be chosen in many ways (infinitely many ways if F' is an infinite field), we
see that W’ is not unique.

For example, let V = R? and let W be a line in R2. Then, any other line of R?
is a complement of W. (Exercise: Do you see why?)

Direct sums:
Let V and W be vector spaces. Then the cartesian product V x W has a vector
space structure defined as follows:
— Addition: For vi,vs € V and wy,wy € W, we define (vi,wy) + (va, w3)
to be (vi + va, Wy + wa).
— Scalar multiplication: For c€ F, ve V and w € W, we define ¢- (v, w) to
be (cv,cw).
This vector space is denoted by V @ W and is called the direct sum of V and W.
(Exercise: Check that the above definitions of addition and scalar multiplication
satisfy really do make V' x W into a vector space.)

REMARK 23.4. Sometimes the direct sum of V and W is also called as the
external direct sum of V and W. This is in order to distinguish it from the “internal
direct sum”, which is defined as follows:

If V is a vector space and Wy, W5 are independent subspaces of V, their sum
W1 + Wy is called the internal direct sum of Wy and Ws.

Of course, we can also construct the external direct sum W7 @ Ws of two sub-
spaces. We will see below that if W; and W5 are independent, then the internal
and external direct sums of W7 and W5 are actually isomorphic.

To understand this vector space better, it will be useful to look at certain
functions. We define p1 : VAW — V by p1((v,w)) =vand po : VAW —» W
by p((v,w)) = w. Let s ;1: V. — V@ W be defined by s;(v) = (v,0) and
sg: W — V@W be defined by and sz2(w) = (0, w).

EXERCISE 23.5. With the above notation, prove the following:

(a) Prove that p1, p2, s1 and sy are linear transformations.
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(b) Prove that p;osy : V — V is the identity transformation on V. Similarly,
show that ps 0 59 : W — W is the identity transformation on W.
(c) Prove that s; and s are injective.

We will assume the results of the above exercise. Let V = s1(V) and W =

s2(W). These are subspaces of V @ W. Explicitly,
V={v,0:veVicVeWw
and N
W={0,w):weW}cVaW.

As s1 and s are injective, we see that the lin~ear transformation V' — 177 vV -
(v,0) is actually an isomorphism. Thus, dim(V) = dim(V). Similarly the linear
transformation W — W, w — (0, w) is an isomorphism. Thus, dim(W) = dim(W).

First we observe that V. n W = {(0,0} which is the zero subspace of V@ W.

Thus, V and W are independent subspaces of V@ W. Also, any element (v, w) of
V @ W can be written as

(v,w) = (v,0) + (0, w).

Thus, VW = V+Ww. Thus, V and W are complementary subspaces. Thus, by
Proposition 22.7, we see that

dim(V @ W) = dim(V) + dim(W) = dim(V) + dim(W).

Dimension of the sum of subspaces:

THEOREM 23.6. Let V' be a vector space and let W1, Wy be subspaces. Then,
we have
dim(Wy + Ws) = dim(W7) + dim(Ws) — dim(W; n Wh).

We will give two proofs of this theorem. The first one is a little abstract and
uses the Rank-Nullity Theorem. The second one follows a more pedestrian approach
and involves a direct algebraic argument involving bases.

PrOOF 1. We define a function s : W7 @ Wy — V by s((w1,ws)) = w1 + wa.
Then, it is easy to see that s is a linear transformation. (Exercise: Prove this.) The
Rank-Nullity Theorem tells us that

dim(W; @ W3) = dim(im(s)) + dim(ker(s)).
We know that dim(W;®Ws) = dim(W;)+dim(Ws). Thus, we see that the theorem
will be proved if we can show that dim(im(S)) = dim(W; + W3) and dim(ker(s)) =
d1m(W1 @) W2)
Observe that
im(s) = {s((wy,w3)) : wy € Wi, wy € Wa}

={wi +wy:wy € Wi, wy € W}

=Wy + Wa.
This implies that dim(im(S)) = dim(W7 + W3), which was one of the equalities we

wanted to prove.
Now, we observe that

ker(s) = {(wy,ws) : s((w1,w2)) =0, wy € Wy, wy € Ws}
= {(Wl,WQ) W1 +wo =0, wy € Wi,wo € WQ}

If (w1, ws) € ker(s), we have wi + wo = 0 and hence w; = —wy. Here, wy € W7,
but —wy € W5. Thus, it follows that wi € Wy n W5, Thus,

ker(s) = {(w,—w):we W n Wa}.
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Now, define the function ¢ : Wy n Wo — W7 @ W3 by ¢(w) = (w, —w). Then,
we see that
im(¢) = {dp(w) : we Wy n Wa}

={(w,—w):weW; n Wy}

= ker(s).
Also, if ¢(w) = (0,0), then it follows immediately that w = 0. Thus, ¢ is injective.
Thus, we see that ¢ induces an isomorphism of Wi n Wy with im(¢) = ker(s).
Thus, dim(W; n Ws) = dim(ker(s)) as required. This completes the proof. O

PROOF 2. Let B be a basis of W7 nW,. This is a linearly independent subset of
W1 and thus there exists a set C; of W7 such that BuCy is a basis of Wy. Similarly,
there exists a subset Cy of W5 such that B u Cqy is a basis of Ws.

Let |B| = m, |C1] = n1 and |C2| = ng. Thus, dim(W7) = m+n; and dim(Ws) =
m + no. We will prove that the set B u C; u Cs is a basis of W7 + W5, This will
show that

dim(Wy + W3) = m + ny + ny = dim(Wy) + dim(Ws) — dim (W7 n Wa)

as required.

As Wy u Wy spans Wy + Ws, and since B u C; spans W; for i = 1,2, we see that
B u Cy uCy spans Wy + Wy, Thus, it remains to be proved that the set Bu Cy U Co
is linearly independent.

Suppose B = {uy,...,un}, C1 = {vi,..., vy, } and Co = {wy,...,w,,}. If the
set B U C1 U Cs is linearly dependent, there exists a non-trivial linear relation

m niy n2
2 a;u; + 2 bjv; + Z cywy =0
i=1 j=1 k=1

where all the a;, b; and ¢, are in F'. Thus,

ny

no m
Z CLW) = — Z a;u; + Z bjv;
k=1 i=1 j=1

The right-hand side of this equation is in W7 and the left-hand side is in W5. Thus,
:.le cpwy is in Wy n Ws. Thus, as B is a basis of W1 n W5, there exist elements
di,...,dy such that

no m
Z CLWE = Z dzul
k=1 i=1

As the set B u C; is linearly independent, it follows that ¢, = 0 for all kK and d; = 0
for all 4. Thus,

m n1
Z a; u; + Z ijj =0.
i=1 j=1

As Bu (; is a linearly independent set, we have a; = 0 for all ¢ and b; = 0 for all
7. This shows that the linear relation we started with was actually trivial, which is
a contradiction.

This shows that the set B U C; U Cs is linearly independent, as required. O






LECTURE 24

Eigenvalues and eigenvectors, Diagonalization

Let V be a finite dimensional vector space and let B be a basis of V. Let
T :V — V be a linear transformation. Then we saw in Chapter 19 that we can
associate a matrix M5 (T) to this transformation. If C is any other basis, we know
that

ME(T) = Mc(B) - ME(T) - M(C) = Ms(C)~" - ME(T) - M(C).
Here, we know that Mp(C) is an invertible matrix.

DEFINITION 24.1. Let n be a positive integer. If P is an n X n invertible matrix,
the function M,, x,,(F) — M, x,(F) defined by A — P~1AP is called as conjugation
by P.

DEFINITION 24.2. Let n be a positive integer. Let A and B be two n x n
matrices. We say that A is similar or conjugate to B if there exists an invertible
matrix P such that A = PBP~!.

This relation has some nice properties:

(a) Reflezive: Every matrix A is conjugate to itself since A = I.;1AIL,.

(b) Symmetry:If A is obtained from B by conjugation by an invertible matrix
P,ie. if A= P 'BP, then B = PAP~!. Thus, B is obtained from A
by conjugation by C~1 (which is also an invertible matrix). Thus, we see
that if A is conjugate to B, then B is conjugate to A.

(¢) Transitivity: If A is conjugate to B and B is conjugate to C' then A is
conjugate to C. Indeed, if A = P7'BP and B = Q~'CQ, then 4 =
PIQICQP = (QP)"'C(QP).

Any “relation” with these properties is said to be an equivalence relation.

REMARK 24.3. We will not discuss relations and equivalence relations in detail
in this course. However, we observe that this notion allows us to partition the set
M, wn(F) into a family of mutually disjoint subsets. Indeed, for every matrix A,
let us denote by cl(A) the set of all n x n matrices which are conjugate to A. It is
called the conjugacy class of A. It can be proved by using the above observations
that for any two matrices A and B, the sets cl(A) and cl(B) are either disjoint
(i.e. their intersection is the empty set) or they are actually equal. Indeed, cl(A)
and cl(B) have a common element if and only if A and B are conjugate to each
other (use transitivity to prove this), and in this case cl(A) = ¢l(B). Thus, any two
distinct conjugacy classes are disjoint. Clearly, any matrix A is contained in some
conjugacy class — it is actually contained in the conjugacy class ¢l(A). Thus, the
union of all the conjugacy classes is M,,x,(F). This shows that all the conjugacy
classes together give us a partition of M, (F') into disjoint sets.

Given any linear transformation from V to itself, its matrix depends on the
choice of the basis of V' that we are using. So, is it possible to choose a basis which
makes the matrix of T particularly simple? This is the question we will try to
answer. (We will only give a partial answer to this question in this course.)
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Eigenvalues:

DEFINITION 24.4. Let V' be a vector space and let T : V' — V be a linear
transformation.

(1) A non-zero element v € V is said to be an eigenvector for T if there exists
an element A\ € F' such that T'(v) = Av. The element A is said to be the
etgenvalue associated to the eigenvector v.

(2) An element of F is said to be an eigenvalue of T if it is the eigenvalue
corresponding to some eigenvector of 7T'.

CONVENTION 24.5. Let A € My, (F). Then the eigenvalues and eigenvectors
of the linear transformation x — Ax will also be referred to as eigenvalues and
eigenvectors of A.

REMARK 24.6. Observe that the eigenvector v is necessarily non-zero. However,
there is no such restriction on A. Indeed, if ker(T) # {0}, then every non-zero
element of ker(T') is an eigenvector of T associated to the eigenvalue 0. Thus, 0 is
an eigenvalue of T if and only if T is a non-zero kernel, i.e. if and only if T is not
injective.

REMARK 24.7. Observe that if v is an eigenvector of T, the line (i.e. 1-
dimensional subspace) span(v) is mapped onto itself by T. Conversely, if v is
a non-zero vector such that the span(v) is mapped into itself by 7', then v is an
eigenvector of T

So, if we are given a linear transformation 7" : V' — V| how should we find its
eigenvectors? Actually, it is much easier to find the eigenvalues of T first.

PROPOSITION 24.8. Let n be a positive integer. Let V be an n-dimensional
vector space and let X € F'. Let A = Mg(T) for any basis B of V. An element
A€ F is an eigenvalue of T if and only if det(\,, — A) = 0.

PROOF. Suppose det(AI, — A) = 0. Then, the matrix B = A, — A is not
invertible. In particular, the row reduced echelon form of B has some columns
which do not contain a pivot. Thus, there exists a non-zero element x € F™ such
that Bx = 0. Thus Ax = Ax. Let v = Bx. Thus, Mg(v) = x. Note that v # 0
since x # 0. We know from Lemma 19.1 that

T(v)=B-ME(T) - Msg(v)=B-A-x=B-Ax=\-B-x=)\v.

Thus, we see that A is an eigenvalue corresponding to the eigenvector v

The converse is essentially proved by reversing the above argument, but we will
write the proof in detail. Suppose that A is an eigenvalue corresponding to the
eigenvector v. Let x = Mpg(v). Observe that x # 0 as v # 0. By assumption,
T(v) = Av. Once again, recall that by Lemma 19, we know that

T(v) = B- ME(T) - Mg(v).
Thus,
B-ME(T) Mg(v) = v=X-B-x=B8-(\x).
Thus (by Remark 18.13, we see that ME(T) - Mp(v) = Ax, i.e. Ax = Ax. Thus
(M, —A)-x = 0. This shows that the matrix (AI, — A) is not invertible. (Otherwise,

we could multiply the equation (A, — A) - x = 0 on the left by its inverse of this
matrix, to get x = 0, which we know is not true.) Thus det(Al,, — A) = 0. O

This leads us to define the following:

DEFINITION 24.9. Let n be a positive integer. Let A € M, (F). Let X denote
a variable. The characteristic polynomial of A is defined to be the polynomial
det(XI, — A).
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If A is a matrix, and A is a root of the characteristic polynomial of A, then the
matrix Al, — A is not invertible. Thus, there exists an element y # 0 of F™ such
that Ay = A\y. Thus y is an eigenvector of the linear transformation 7' : F™ — F™
defined by T'(x) = Ax.

It should be clear that we can use this method to find the eigenvalues of a
linear transformation 7' : V' — V for any abstract finite dimensional vector space
V, not just F™. To begin with, we simply fix the basis B, which establishes an
isomorphism of V' with F" (where n = dim(V)) and then linear transformation
T can be expressed as multiplication by an n x n matrix A. We compute the
characteristic polynomial of A and find all its roots. By Proposition 24.8, the roots
of this polynomial are exactly the eigenvalues of 7.

What about the eigenvectors of T7 Suppose A is as above and x is an eigen-
vector of the linear transformation x — Ax and the corresponding eigenvalue is .
Then, we see from the proof of Proposition 24.8 that the element v = B - x is an
eigenvector of T and the corresponding eigenvalue is A. Also, all eigenvectors of T’
can be obtained in this manner.

LEMMA 24.10. Letn be a positive integer. Let A, B € M« (F) be two conjugate
matrices. Then A and B have the same characteristic polynomial.

PROOF. By assumption, there exists an invertible matrix P such that A =
P~!BP. Then we see that

det(X1I, — A) = det(XI, — P"'BP)
=det(P~'-(XI, - B) - P)
= det(P~1)det(XI, — B) det(P)
= det(X I, — B).
This proves the result. O
LEMMA 24.11. Let V be a finite dimensional vector space. Let B be a basis of

V. Then, the characteristic polynomial of the matriz ME(T) does not depend on
the choice of B.

ProoOF. This follows from the previous lemma since if C is any other basis, the
matrices M5 (T) and M§(T) are conjugates. O

DEFINITION 24.12. Let V be a finite dimensional vector space. Let T : V — V
be a linear transformation. The characteristic polynomial of T is defined to be the
characteristic polynomial of the matrix ME (T) for any basis B of V.

EXAMPLE 24.13. Consider the linear transformation T : R? — RZ2 given by

T(x) = Ax where A = [? _32
T.

The characteristic polynomial of A is

-3
X+2

]. Let us find all the eigenvectors and eigenvalues of
X -2 9
det(X 1o — A) = det 1 =(X-2)(X+2)—(-1)(-3)=X"-T.

Thus, the eigenvalues of T are A7 and —/T.
Let us now find the eigenvectors of A. First we work with the eigenvalue /7.
To find all the corresponding eigenvectors, we wish to solve the equation Ax = +/7x.

This can be written as
V-2 =3 |[=] _[o
-1 T+ 2| |z |0
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As usual, we denote this by an augmented matrix.

[W—Q —3 0]
-1 7+210

We perform the row operation (\/?172)]%1.

—3
1 f”o}

1 J7+2]0

Perform the operation Ry + Ry. (I have omitted the computations required to
simplify the expression in the second row.)

| —

3
This gives us the eigenvector l\ﬁl 21 .

3
A similar computation gives us the eigenvector l—\ﬁ —21 for the eigenvalue

1

—+/7. (Check this!)

EXAMPLE 24.14. Consider the linear transformation T : R? — RZ2 given by
T(x) = Ax where A = (1) _01
of T. You may check that this is just the rotation around the origin through /2
radians (i.e. 90 degrees) in the anti-clockwise sense. We know that if v is an
eigenvector, the line span(v) will be mapped into itself by T. But we know that
the rotation through /2 radians cannot map any line into itself — every line gets
rotated through 7/2 radians around the origin. So we do not expect to find any
eigenvectors for this linear transformation. We will verify this algebraically.

The characteristic polynomial of A is

. Let us find all the eigenvectors and eigenvalues

X 1

det(X Iy — A) = det [_1 X

] =X>+1
This polynomial has no root in R and so T has no eigenvectors.

Thus, we see that a linear transformation (or a matrix) can fail to have eigen-
values simply because the characteristic polynomial does not have any roots in the
field F'. This problem can be fixed by working over a field that is large enough so
that all polynomials in F[X] have roots. A field F'is said to be algebraically closed
if any non-constant polynomial in F[X] has a root. It can be proved that every field
is contained in a bigger field which is algebraically closed. Over an algebraically
closed field, every square matrix will have at least one eigenvalue. We will not
discuss this matter any further in this course.

Diagonalization:

DEFINITION 24.15. Let n be a positive integer. A matrix A € M, «,(F) is said
to be a diagonal matriz if all of its non-zero entries are on the diagonal.

Note that for a matrix to be a diagonal matrix, the only requirement is that all
the entries that are not on the diagonal should be zero. It is perfectly fine if there
are some zeros on the diagonal as well.

LEMMA 24.16. Let n be a positive integer. Let A € My, (F). Letey,..., e,
denote the standard basis of F™. Then A is a diagonal matriz if and only if e; is
an eigenvector of the linear transformation x — Ax for every i.
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PrOOF. Recall that the column matrix Ae; is just the i-th column of A.

If A is a diagonal matrix, Ae; can only have a non-zero term in the (¢,1)-
position and is hence a scalar multiple of e;. This shows that e; is an eigenvector
of the transformation x — Ax.

Conversely, suppose that e; is an eigenvector for the transformation x — Ax.
Thus, there exists an element \; € F' such that Ae; = \;e;. As this is the i-th
column of A, we see that the i-th column of A has \; in the i-th row, and all other
terms in this column are equal to 0. This shows that A is a diagonal matrix. O

DEFINITION 24.17. Let n be a positive integer. An n x n matrix is said to be
diagonalizable if it is similar to a diagonal matrix.

DEFINITION 24.18. Let V be a finite dimensional vector space. Let T : V — V
be a linear transformation. We say that T is diagonalizable if there exists a basis
B such that ME(T) is diagonal.

LEMMA 24.19. Let V be a finite dimensional vector space. Let T : V — V be a
linear transformation. Let B be an ordered basis of V. Then ME(T) s a diagonal
matriz if and only if every vector in B is an eigenvector of T'.

PROOF. Let n = dim(V') and let eq,...,e, denote the standard basis of F™.
Recall (see Theorem 18.12) that we have an isomorphism between ¢ : V' — F™ given
by ¢(v) = Mp(v) and its inverse 1) is given by 1(x) = B-x. Let B=[vi -+ v,].
Then, ¢(v;) = e; and 9(e;) = B - e;.

Suppose that M5 (T) is a diagonal matrix. Then, for every i, e; is an eigenvector
of the transformation x — Mg (T)x. Thus, for every i, there exists A\; € F such
that ME(T)e; = \ie;. We know that

Mp(T(v)) = ME(T) - Mp(v)
for every v € V. Using this for v = v;, we get
Mg(T(v;)) = ME(T) - e; = \ie,.
Thus,
T(vi) =B -Mp(T(vi)) =B (Xe;) = \; - B-e; = \jv;.
This shows that v; is an eigenvector of T'.
The converse is left as an exercise. |

LEMMA 24.20. Let V be a finite dimensional vector space and let B be an ordered
basis of V.. Let T : V — V be a linear transformation. Then T is diagonalizable if
and only if the matriz M (T) is diagonalizable.

PROOF. Suppose Mg (T') is diagonalizable. Thus, there exists an invertible
matrix P such that the matrix P~'ME(T) is diagonal. Let C = B - P. By Exercise
20.3, C is an ordered basis of V. Also Mg(C) = P.

We also know that

ME(T) = Ms(C)™" - ME(T) - Ms(C) = P~ - ME(T) - P.
By assumption, this is a diagonal matrix. Thus, T is diagonalizable.

The converse is left as an exercise. O

By Lemma 24.19, we see that to diagonalize a linear transformation T : V — V|
we need to find a basis of V' consisting eigenvectors of V. Such a basis will not
always exist. The transformation is diagonalizable if and only if we can find a basis
consisting of eigenvectors.

PROPOSITION 24.21. Let V' be a vector space and let T : V. — V be a linear
transformation. For any A € F', we define

Ww={veV:T(v)=Av}.
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(1) For any A€ F, the set Vy is a subspace of V.

(2) For A€ F, Vy # {0} if and only if \ is an eigenvalue of T.

(3) Let A1,..., N distinct eigenvalues of T. Then the subspaces Vy, are inde-
pendent.

ProoOF. We first prove (a). Fix A € F and define S : V. — V by S(v) =
T(v) — Av. Then, S is a linear transformation. (Do you see why?) Then V) is just
the kernel of S and is hence a subspace of V. This completes the proof of (a).

Part (b) is an immediate consequence of the definition of an eigenvector.

We prove part (c) by induction on k. When k = 1, the claim is trivially true.
Now suppose that the result is known to be true for £ < r. We will verify the result
for k =r+1.

Let A1, ..., Ay distinct eigenvalues of T'. Suppose we have an equation

VitV =0 (24.1)
where v; € V), for every 4. Applying T" to both sides, we get
AV 4+ A1V = 0. (24.2)
Subtracting A1 times equation (24.1) from equation (24.2), we get
M= )vi+ ...+ (A — A1)V = 0.
We set w; = (A\;j—Ap11)v;. Then, w; € V), fori = 1,...,r and we have the equation
wi+--+w, =0.

By the induction hypothesis, we have w; = 0fori =1,...,r. Thus, (\;—A.41)v; =

0 for ¢ = 1,...,r. But then, for every such i, we have \; — A1 # 0. Thus, we see
that v; = 0 for ¢ = 1,...,r. Then, equation (24.1) tells us that v, is equal to O
as well. Thus, v; =0 for ¢ = 1,...,r + 1. This proves (c). |

We will need to use the following fact about polynomials. We will not prove it
in this course:

FacT 24.22. A non-constant polynomial in F[X] of degree d has at most d
distinct roots.

Now, let V' be a finite dimensional vector space and let T : V' — V be a linear
transformation. Let Aq,..., \x be all the distinct eigenvalues of T. (Note that they
are finite in number because of Fact 24.22.) By Proposition 24.21, we see that the
spaces V3, , ..., Vy, are indepedent. Thus, by Remark 22.9, we see that

k k
dim() Va,) = Z dim(Vy,).

i=1

In particular, we see that

k
> dim(Vy,) < dim(V).
i=1
Suppose B is a basis of V' consisting of eigenvectors of T'. Each element of B
lies in some Vy,. For every i, let B; = B n V), and let W; = span(B;). For i # j,
we see that

BinBjcVy, n V,\j = {0}.

As every element of B is non-zero, we conclude that B; n B; = & for ¢ # j. Thus
B is a disjoint union of the B; and hence Zle |B;| = |B|] = dim(V).
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For every ¢, W; is a subspace of V; and we have V,, = W; if and only if B; is a
basis of V;. So,
dim(V) = |B]

k
>, 1Bil
i=1

k
Z dim(W;)

k
< > dim(Vy,)
=1

< dim(V).

This shows that equality holds at each stage in this sequence of inequalities. Thus
B, is a basis of V), for every 4.

Algorithm for diagonalizing a linear transformation:

The above discussion gives us an algorithm for checking whether T is diagonal-
izable and, if it is so, to find a basis which actually diagonalizes it:

STEP 1 : Fix an ordered basis B of V. Compute the matrix ME(T) and then
compute its eigenvalues. These are the eigenvalues of T. Let us denote
them by Ai,..., .

STEP 2 : For i = 1,...,k, we define V), = ker(\; - Idy — T') where Idy is the
identity transformation on V' (defined by Idy (v) = v).

STEP 3 : If Y% | dim(Vy,) < dim(V), then T is not diagonalizable.

STEP 4 : If Zle dim(Vy,) = dim(V), find a basis B; of V,. Then B = Ule B; is
a basis of V' consisting of eigenvectors of T'.

Algorithm for diagonalizing a matrix:

Suppose we are given an n X n matrix A. We wish to find whether this matrix
is diagonalizable. We apply the above algorithm to the transformation x — Ax and
obtain the following:

STEP 1 : Compute the characteristic polynomial of A and then compute all its
roots. These are the eigenvalues of A. Let us denote them by Aq,..., Ag.

STEP 2 : For ¢ = 1,...,k, we find the set V; of all x such that (\;I, — A)x = 0.
This is done by the row reduction algorithm. The set of all such x is a
subspace of F™. Let d; be the dimension V;. (One can check that d; is just
equal to n minus the number of pivots in the row-reduced echelon form of
the matrix A\;I,, — A.)

STEP 3 : If Zle d; < n, then A is not diagonalizable.

STEP 4 : If ¥ | dim(V;) = n, find a basis B; of V;. Then B = | Jf_, B; is a basis
of F™. Let £ denote the standard basis of F™. Then we set P = Mg(B).
(This matrix is very easy to write down if you actually have the elements
of B. The elements of B are n x 1-matrices. Simply place them side-by-side
to obtain an n x m-matrix. This is precisely the matrix Mg(B).) Then
P71AP is a diagonal matrix.
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