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LECTURE 1

Solving linear equations - basic examples

We will begin by looking at a problem that should be familiar from high school
mathematics - solving systems of linear equations. Suppose we have variables
X1, . . . , Xn, a linear equation in these n-variables is an equation of the form

a1X1 ` . . .` anXn “ b

where a1, . . . , an, b are all “constants”. Generally this means that they are fixed
numbers of a certain kind, the value of which is either known or assumed to be known
in the context of the given problem. In this lecture, for the sake of definiteness, we
will say that all our constants are in the set of real numbers, which will be denoted
by R. We will see later that all the arguments in this lecture apply even if the
constants lie in the set of rational numbers (denoted by Q) or the set of complex
numbers (denoted by C).

A system of m linear equations in n variables looks something like this:

a11X1 ` a12X2 ` ¨ ¨ ¨ ` a1nXn “ b1
a12X1 ` a22X2 ` ¨ ¨ ¨ ` a2nXn “ b2

...
...

...
...

...
am1X1 ` an2X2 ` ¨ ¨ ¨ ` amnXn “ bm

Here aij and bi is a constant (i.e. a real number, by our current convention) for
every i and j where 1 ď i ď m and 1 ď j ď n.

Given any system of equations, one typically tries to solve them by manipulating
them in some way and creating new equations. For instance consider the following
example:

Example 1.1. We want to solve the equation

X ` 2 “ 5. (1.1)

We add ´2 to both sides of the equation to get the equation X`2`p´2q “ 5`p´2q,
which can be rewritten as

X “ 3. (1.2)

We observe that the only real number that can be substituted in place of X in
equation (1.2) to get a true statement is 3. However, is it automatically clear that
this is also a solution for equation (1.1)? Not quite. This is something we have to
check. So we substitute 3 in the first equation and see that

3` 2 “ 5

is a true statement. �

Why did we have to check the solution by substituting 3 in place of X in
equation (1.1)? Because generally when we perform some operation on an equation
to create a new equation, we can only say that the old equation implies the new
equation, and not the other way around. In other words, solutions of the first
equation will necessarily be solutions of the second equation, but solutions of the
second equation may not be solutions of the first equation. The following example
will illustrate this problem:

5
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Example 1.2. Let X denote a variable. Consider the equation

X “ 5.

Obviously, the only real number which may be substituted in this equation to get a
true statement is 5. However, suppose we square both sides of this equation to get
a new equation as follows:

X2 “ 25

Now, this solution has two solutions - 5 and ´5. However, ´5 is not a solution of
the original equation. �

However, in some situations, we can actually deduce that the new equation is
equivalent to the old equation. For instance:

(1) Let c be a non-zero real number. Given an equation of the form A “ B,
if we multiply both sides by c, we get the equation cA “ cB. This new
equation is equivalent to the old one since we can multiply it by 1{c to
deduce the old equation from it.

(2) Let c be any real number. Given an equation of the form A “ B, if we
add c to both sides of this equation, we get the equation A ` c “ B ` c.
This new equation is equivalent to the old one since we can add ´c to
both sides to deduce the old equation from it.

We will use this observation to deal with some easy examples in which our sys-
tem consists of only one equation. To make matters even simpler in the beginning,
we focus on equations in which n “ 1, i.e. there is only one variable.

Example 1.3. Let us solve the equation

3X “ 5. (1.3)

This is very easy. We multiply both sides by 1{3 to get

X “ 5{3. (1.4)

Notice that equation (1.4) is equivalent to (1.3) because of our observations above.
So it is enough to solve this new equation. It is clear that the only real number
which can be substituted in place of X in equation (1.4) is 5{3. So, this is the
only solution of equation (1.3) as well. Thus, the solution set (i.e. the set of all
solutions) for this equation is t5{3u. �

Example 1.4. The equation 0 ¨X “ 0 cannot be solved by the above method
since we cannot multiply both sides by 1{0 (since there is no such thing as 1{0).
But we see at once that any number can be substituted for X in this equation to
get a true statement. Thus, the solution set of this equation is R. �

Example 1.5. The equation 0 ¨ X “ 2 also cannot be solved by the method
in Example 1.3, but this time it is easy to see that this equation has no solutions.
Thus, the solution set for this equation is the empty set tu which is denoted by
H. �

Though we picked some specific examples, it should be easy for you to see that
any linear equation in one variable is of the above three types. Its solution set could
be of three kinds - the empty set, a singleton set or the whole of R.

What about systems of equations? Let us consider a system of linear equations
in one variable.

Example 1.6. Consider the system

a1X “ b

a2X “ b
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where a1, a2, b are all constants. We wish to find all values of X which satisfy
these two equations simultaneously. So, we first solve any one of the two equations.
Suppose we solve the first equation. We will have three cases:

(i) If equation a1X “ b has no solutions, then clearly the system as a whole
also has no solutions.

(ii) If the solution set of the equation a1X “ b is of the form tcu for some
c P R, then we check whether c satisfies the equation a2X “ b or not by
directly substituting c in place of X in this equation. If it c satisfies the
second equation, this means that the solution set of the system is tcu. If
c does not satisfy the second equation, the solution set is H.

(iii) If the solution set of a1X “ b is R, then we solve the second equation
using the above methods. The solution set of the system is then identical
to the solution set of the second equation. �

Now let us try something a little more complicated – let us consider a single
equation with two variables.

Example 1.7. We wish to solve equations of the form a1X1 ` a2X2 “ b where
a1, a2, b are constants. We look at various cases:

(i) If a1 “ a2 “ b “ 0, then any ordered pair of real numbers px1, x2q satisfies
this equation. So, in this case the solution set is R2.

(ii) If a1 “ a2 “ 0, but b ‰ 0, then there are no solutions. So, in this case the
solution set is H.

(iii) Suppose a1 ‰ 0. (We are making no assumptions about a2 in this case.)
In this case, we can construct a solution by choosing an arbitrary value
for X2. Indeed, let t be any real number. We claim that there is unique
real number s such that ps, tq is a solution. To see this, we substitute t in
place of X2 to get the equation

a1X1 ` a2t “ b

which is equivalent to

a1X1 “ b´ a2t.

We know from our analysis of single variable equations that, this second
equation can be uniquely solved for X1 (since a1 ‰ 0). Indeed, we have

X1 “
pb´a2tq
a1

. Thus, for any real number t, we can come up with a solution

of the form p
pb´a2tq
a1

, tq.
Thus, the solution set is

S :“ tp
pb´ a2tq

a1
, tq : t P Ru.

If t1 ‰ t2, clear the ordered pairs ppb´ a2t1q{a1, t1q and ppb´ a2t2q{a1, t2q
cannot be equal. Thus, the function t ÞÑ ppb ´ a2tq{a1, tq is a bijection
between the set S and the set R. Thus, we see that in this case, the
solution set is in bijection with R.

(iii) If a1 “ 0 and a2 ‰ 0, we can interchange the roles of a1 and a2. A
calculation similar to the one above shows that in this case the solution
set is

tpt,
pb´ a1tq

a2
q : t P Ru

and that this set is in bijection with R.

Thus, we see that the solution of this equation can be of three forms – an empty
set, a set in bijection with R or the whole of R2. If you recall some high school
coordinate geometry, you will see that when a1 ‰ 0 or a2 ‰ 0, the set is actually a
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line in the Cartesian plane. Thus, the solution set is either the empty set, a line or
the entire plane. �



LECTURE 2

Systems of linear equations - further examples

We continue our discussion with our study of systems with a single linear equa-
tion.

Example 2.1. Consider the equation

a1X1 ` a2X2 ` a3X3 “ b

where a1, a2, a3, b are all in R.
This equation should be solved exactly along the same lines as in 1.7. If a1 “ 0,

then X1 does not really play any role in this equation and so can take any value.
Then we solve the equation a2X3 ` a3X3 “ b as in 1.7. Solutions of the original
equation can be easily derived from this. (Can you work out the rest of this case in
detail?)

We will focus on the case a1 ‰ 0. In this case, we can assign arbitrary values
to X2 and X3. Suppose we set X2 “ t2 and X3 “ t3 where t2, t3 are real numbers.
Then, we can solve the equation

a1X1 “ b´ a2t2 ´ a3t3

to obtain the value of X1. Thus, the solution set is
#

ˆ

b´ a2t2 ´ a3t3
a1

, t2, t3

˙

: t2, t3 P R

+

.

Notice that here X2 and X3 can take arbitrary values. In some sense, we have
only renamed them to t2 and t3. However, note that we know exactly which values
t2 and t3 are allowed to take while we did not know what values X2 and X3 could
take in the beginning. Also observe that t2 and t3 can take values independently
of each other (meaning that choosing a particular value for t2 does not affect our
choice of t3 - it can be chosen entirely freely as well). We say that the solution
depends on two parameters. We will make all this more precise as we go along. �

We will now move on to solving systems containing more than one equation.
For this, we first look into how we manipulate systems of equations. Just like
the case of single-equation systems, we modify our given equations by performing
operations on them to produce new systems of equations. The new system will
generally be a consequence of the old one, but the reverse may not be true. Thus,
any solution of the old system will definitely be a solution of the old system, but
the new system may have some solutions which are not solutions of the old system.
This can be avoided if the operations we perform are reversible, i.e. if there exists
another operation which allows us to deduce the old system from the new system.

Suppose we have been given a system of n equations. We write them one below
the other in n-rows. FOr instance, suppose they look like this:

A1 “ B1 (E1)

A2 “ B2 (E2)

...
...

An “ Bn. (En)

9
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We will list some reversible operations that we would like to perform on this system.
(This is not an exhaustive list of all reversible operations. We are only listing the
operations we need.)

(1) Adding a constant multiple of one equation to another: Let x P R. In
this operation, we multiply x times equation (Ek) to the equation (El)
to obtain a new equation, which we denote by (E1l). Then we delete the
equation (El) and write the equation (E1l) in its place. Thus, now the
system will appear as follows:

A1 “ B1 (E1)

...
...

Ak “ Bk (Ek)

...
...

Al ` xAk “ Bl ` xBk (E1l)

...
...

An “ Bn. (En)

Notation: Since we have added x times the k-th row to the l-th row in
our system, we will use the shorthand notation Rl ` xRk to denote this
operation.
Reversibility: Note that this operation is reversible. Indeed, if we per-
form the operation Rl ` p´xqRk, we will recover our original system of
equations.

(2) Replacing an equation by a non-zero multiple: Let x be a non-zero con-
stant. In this operation, we replace equation (Ek) by the equation

xAk “ xBk.

Notation: We will use the shorthand notation xRk to denote this oper-
ation.
Reversibility: This operation is reversible since we can recover the orig-
inal system by applying the operation p1{xqRk. Note that in order to do
so, p1{xq needs to be defined, which is why we need the condition x ‰ 0.

(3) Interchanging two equations: In this operation, we simply change the posi-
tions of the equations (Ek) and (El). In other words, we write the equation
(El) in the k-th row and the equation (Ek) in the l-th row.
Notation: We will denote this operation by Rk Ø Rl.
Reversibility: This operation is reversible since we can apply it again to
the new system to recover the old system.

Now let us apply these operations to system with two equations in two variables.

Example 2.2. We wish to solve the following system

aX1 ` cY “ e

bX ` dY “ f

where a, b, c, d, e, f are constants.
One simple way to solve this problem is to first solve the first equation (as we

have done above), and then substitute its solutions in the second one to see which
of them are solutions to both equations. This is a perfectly reasonable method, but
we adopt a slightly different approach.

The idea is to use the above operations to reduce the coefficient of X in one of
the equations to 0. Once this is done, the second equation can be easily solved for
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Y . Then, we can substitute the value obtained for Y in the first equation and solve
it to obtain the value of X.

Suppose a “ b “ 0. Then X does not really matter in this system and can take
any value in R. We may then simply focus on the system consisting of the equations
cY “ e and dY “ f . (Do you see how to write the solution set of the first system
after solving this second system?)

Now suppose that at least one of the two numbers a and b is non-zero. We would
like to focus on the situation in which the coefficient of X in the first equation is
non-zero. So, if a “ 0 and b ‰ 0, we perform the operation R1 Ø R2 to obtain the
system

bX ` dY “ f

aX ` cY “ e.

So, we may now assume that a ‰ 0. We first perform the operation p1{aqR1.

X ` pc{aqY “ pe{aq

bX ` dY “ f

It is now easy to see how we may reduce the coefficient of X in the second equation
to 0. We perform the operation R2 ` p´bqR1.

X ` pc{aqY “ pe{aq

0 ¨X `

ˆ

d´
bc

a

˙

Y “ f ´
be

a

This may be rewritten as follows:

X ` pc{aqY “ pe{aq

0 ¨X `

ˆ

ad´ bc

a

˙

Y “
af ´ be

a

Thus, if ad´bc “ 0 and af´be “ 0, then Y can take any value t in R. For every
value t, we may substitute it in place of Y in the first equation to get X “ e´tc

a .
Thus, in this case, the solution set will be

#

ˆ

e´ tc

a
, t

˙

: t P R

+

.

If ad´ bc “ 0 but af ´ be ‰ 0, then no real number can be substituted in place
of Y in the second equation to get a true statement. Thus, in this case the solution
set is H.

If ad´ bc ‰ 0, we may perform the operation a
ad´bcR2 to get the system

X ` pc{aqY “ pe{aq

0 ¨X ` Y “
af ´ be

ad´ bc
.

Thus, we can immediately read off the value of Y in the solution to be af´be
ad´bc .

So now we could just substitute this value in the first equation to solve for X.
However, there is a more elegant approach. We can simply perform the operation
R1 ` p´c{aqR2 to remove Y from the first equation. This gives us the system

X ` 0 ¨ Y “ pe{aq ´
cpaf ´ beq

apad´ bcq

0 ¨X ` Y “
af ´ be

ad´ bc
.
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On simplifying, this takes the form

X ` 0 ¨ Y “
ed´ cf

ad´ bc

0 ¨X ` Y “
af ´ be

ad´ bc
.

Thus, in this case, the solution set is
#

ˆ

ed´ cf

ad´ bc
,
af ´ be

ad´ bc

˙

+

This completes our solution for a system of two linear equations in two variables. �



LECTURE 3

Matrices

In this lecture, we will begin to work out an algorithm to solve systems of
linear equations. Recall that we wish to manipulate systems of linear equations
using certain reversible operations. These are listed below with the notation used
to indicate them:

(1) Ri ` xRj : Adding x times equation (j) to equation (i), where x is any
constant. The resulting equation replaces equation i.

(2) xRi: Multiplying equation (i) by x where x ‰ 0. The resulting equation
replaces equation (i).

(3) Ri Ø Rj : Interchanging equations (i) and (j).

Note that while we are doing these manipulations, we usually list the equations
one below the other in increasing order of their label. Also, we usually fix an
order on the variables and always write the equation so that the variables appear
in that order from left to right. For instance, if the variables are X, Y and Z, we
fix the order pX,Y, Zq and write any linear equation involving these variables as
aX ` bY ` cZ “ d (so that X, Y and Z appear in that order from left to right).
Thus, if we have 4 equations in these three variables, they will look like:

a11X ` a12Y ` a13Z “ b1
a21X ` a22Y ` a23Z “ b2
a31 ` a32Y ` a33Z “ b3
a41X ` am2Y ` am3Z “ b4

Thus, the terms involving a fixed variable appear neatly in a vertical column. Thus,
we could completely omit to write the variables and represent the above system as

»

—

—

–

a11 a12 a13 b1
a21 a22 a23 b2
a31 a32 a33 b3
a41 a42 a43 b4

fi

ffi

ffi

fl

This is called an augmented matrix. Before we explain this term, we first define a
matrix.

Definition 3.1. Let m and n be positive integers. An m ˆ n matrix A is a
collection of mn numbers arranged in a rectangular array as follows:

»

—

—

—

—

—

–

a11 ¨ ¨ ¨ ¨ ¨ ¨ a1n
...

...
...

...
am1 ¨ ¨ ¨ ¨ ¨ ¨ amn

fi

ffi

ffi

ffi

ffi

ffi

fl

The number in the i-th row and j-th column is called the pi, jq-entry of the matrix
and is denoted in the above representation as aij .

In the above definition, the word number can be interpreted to mean real num-
ber, complex number, integer, or whatever you like. For now, we will continue to
assume that they are real numbers.

13
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An augmented matrix is just a matrix in which the last column is considered to
be special in some way and is separated from the rest of the matrix by a separator.
If you like, you may also see an m ˆ pn ` 1q augmented matrix as being made of
a m ˆ n matrix written on the left (which we will refer to as the left block of the
augmented matrix), and a mˆ 1 matrix written on the right (the right block of the
augmented matrix) . Thus, we see that an augmented m ˆ pn ` 1q matrix can be
used to represent a system of m linear equations in n variables.

The elementary row operations listed above can now be performed on matrices.
Recall the examples from the earlier lectures and Tutorial 1. The objective of these
row operations is to reduce the left block of the augmented matrix into a particularly
simple form so that the solutions of the linear system can be computed easily. We
now describe this “simple form” in the following definition:

Definition 3.2. A matrix is said to be a row reduced echelon matrix (or to be
in row reduced echelon form) if it satisfies the following conditions:

(a) The leftmost non-zero entry in every row is equal to 1. Such an entry is
called a pivot.

(b) If a column contains a pivot, all other entries in that column are equal to
0.

(c) If i ă j are positive integers and the i-th and j-th rows contain pivots, the
pivot in the j-th row is to the right of the pivot in the i-th row. (More
precisely, if the pivot in the i-th row occurs in the ki-th column and the
pivot in the j-th row j the kj-th column, then ki ă kj .)

(d) All the zero rows (i.e. rows filled with 0’s) occur at the bottom of the
matrix. In other words, no non-zero row occurs below a zero row.

We list some matrices and check whether they are in row reduced echelon form
or not. All the pivots are indicated by a box around them.

Example 3.3. The following matrices are in row reduced echelon form:
»

—

–

1 4 3 0 2 0

0 0 0 1 5 0

0 0 0 0 0 1

fi

ffi

fl

and

»

—

–

0 1 1 0 0 3

0 0 0 1 0 2

0 0 0 0 1 8

fi

ffi

fl

A somewhat odd example is the following:
»

–

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

fi

fl

Do you understand why this is in row reduced echelon form?

Example 3.4. We now list some matrices that are not in row reduced echelon
form.

(1) The matrix
»

—

–

1 8 2 0 3 0
0 0 0 2 0 0

0 0 0 0 0 1

fi

ffi

fl

does not satisfy condition (a).
(2) The matrix

»

—

–

0 1 6 0 5 2

0 0 0 1 5 0

0 0 0 0 0 1

fi

ffi

fl

fails to satisfy condition (b).
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(3) The matrix
»

—

–

1 0 0 0

0 0 1 3

0 1 0 2

fi

ffi

fl

fails to satisfy condition (c).
(4) The matrix

»

—

—

—

–

1 4 3 0 2 0
0 0 0 0 0 0

0 0 0 1 5 0

0 0 0 0 0 1

fi

ffi

ffi

ffi

fl

fails to satisfy condition (d).

We will show in the next lecture that any matrix can be transformed into a row
reduced echelon matrix using elementary row transformations.





LECTURE 4

Row reduction algorithm

We will now see that there exists a systematic procedure, i.e. an algorithm,
that allows us to reduce any given matrix to a row reduced echelon matrix using
elementary row transformations.

Recall that the elementary row transformations are as follows:

(1) Adding a constant multiple of the j-th row to the i-th row: This is oper-
ation is written as Ri ` xRj or Ri Ñ Ri ` xRj , where x is a constant.

(2) Multiplying row i by a non-zero constant: This operation is written as
xRi or Ri Ñ xRi where x is a non-zero constant.

(3) Switching the i-th and j-th rows: This operation is written as Ri Ø Rj .

We will not define algorithms formally. Roughly speaking, an algorithm is a
formal set of instructions that starts with some data (called as the input), performs
certain operations on the data and then produces a result (called as the output).
The instructions to perform those operations need to be concrete enough that they
can be executed by a computer. When we come up with an algorithm, we should
be able to show that it will terminate in a finite amount of time and that it will
indeed produce the desired result. We will first only present the algorithm and look
into the proof of its validity in the next lecture. Our presentation will be extremely
informal to begin with and the instructions of the algorithm will be accompanied
with a detailed commentary to explain what is happening.

Input: We are given an mˆn matrix A with entries in R with m and n are positive
integers.

Note that the algorithm will work just as well if we are given a matrix with
entries from Q or C.

Step 0: Set P “ H.
Our strategy is to bring the given matrix into the required form one column at

a time. Within every column, we will try to create a pivot. (Recall from the last
lecture that an entry in the matrix is a pivot if it is the leftmost non-zero entry in
a row and if it is equal to 1.) While we are computing, we need to keep track of
two things - (1) which column we are working on right now, and (2) which rows
have acquired pivots. In our first draft of the algorithm, the column number being
considered will be the same as the number of the step we are executing, and so it
is easy to keep track of it. The set P will be used to remember which rows have
pivots. Once we create a pivot in row number i, we will add the integer i to P.
Since we have not done anything yet, P is empty.

Step 1: There are two cases to consider in this step:

(Case 1 ) If all the entries of column 1 are equal to 0, go to step 1.
(Case 2 ) If not all the entries of column 1 are equal to 0, let the first non-zero entry

from the top occur in row j. Denote this entry by x. Perform the following
operations (in the given sequence):

– If j ą 1, then perform the operation R1 Ø Rj.
– Perform the operation p1{xqR1.
– Add the element 1 to P

17
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– For every integer p satisfying 1 ď p ď m, let ap1 denote the pp, 1q
entry. For every such p, perform the operation Rp ´ ap1R1.

– Go to Step 2.

Our intention in this step is to change column 1 so that it will be consistent
with the row reduced echelon form. (Case 1) just checks if there is any non-zero
term. If there is no such term, we simply move on to the next column, i.e to Step
2. Thus, the matrix looks like the following:

»

—

—

—

—

–

0 ˚ ¨ ¨ ¨ ˚

0 ˚ ¨ ¨ ¨ ˚

...
...

...
0 ˚ ¨ ¨ ¨ ˚

fi

ffi

ffi

ffi

ffi

fl

Notice that in this case, we do not create a pivot and so P remains empty.
In (Case 2), we the topmost non-zero element in the first column is in row i.

We shifted this element to the first row, turned it into 1 and then used it to reduce
all other elements in the first column to 0. Thus, in this case the matrix will look
like the following:

»

—

—

—

—

–

1 ˚ ¨ ¨ ¨ ˚

0 ˚ ¨ ¨ ¨ ˚

...
...

...
0 ˚ ¨ ¨ ¨ ˚

fi

ffi

ffi

ffi

ffi

fl

Thus, in this case we have created a pivot and so we added the element 1 to the set
P. Thus, in this case, the set P changes to t1u.

Step 2: Let i be the smallest integer such that i R P. There are two cases to
consider in this step:

(Case 1 ) For every integer l such that i ď l ď m, the pl, 2q-entry is equal to 0. In
this case, go to step 3.

(Case 2 ) If the condition in (Case 1) does not hold, let j be the smallest integer
such that i ď j ď m and the pj, 2q-entry is non-zero. Denote this entry by
x. Perform the following operations (in the given sequence):

– If j ą i, then perform the operation Ri Ø Rj.
– Perform the operation p1{xqRi.
– Add the element i to P
– For every integer p satisfying 1 ď p ď m and p ‰ i, let ap2 denote

the pp, 2q entry. For every such p, perform the operation Rp´ ap2Ri.
– Go to Step 2.

In this step, we work on column 2. We want to create a pivot in column 2, if
possible. However, this pivot must be in a new row. Thus, we avoid all the rows
whose label is contained in the set P (the “pivoted rows”). The row immediately
after all the pivoted row is the i-th row. We look at all the entries in column 2
which occur in the i-th row or below. If none of them are non-zero, this means that
we are in (Case 1) of Step 2 and we move on to Step 3. Note that it could also
happen that the matrix has only one row which is already pivoted (i.e. i “ m` 1).
In that case too, one can check that (Case 1) is valid. (Do you see why? Because
the set of all integers j satisfying m` 1 ď j ď m is empty ! It is certainly true that
“all numbers in an empty set are equal to zero”! It sounds silly, but it is true!)

If (Case 1) is not valid, it means that there exists a non-zero entry in column 2
which does not lie in a pivoted row. Suppose this entry lies in row j. We moved it
up to column i and turned it into 1. Then we used it to turn all the other entries
in column 2 into 0.
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The two cases in Step 1 and the two cases in Step 2 have given rise to four
possibilities. Can you figure out what the matrix will look like in each case?

For every integer k satisfying 2 ă k ď m, Step k is similar to Step 2.

Step k: Let i be the smallest integer such that i R P. There are two cases to
consider in this step:

(Case 1 ) For every integer l such that i ď l ď m, the pl, kq-entry is equal to 0. In
this case, go to step 3.

(Case 2 ) If the condition in (Case 1) does not hold, let j be the smallest integer
such that i ď j ď m and the pj, kq-entry is non-zero. Denote this entry by
x. Perform the following operations (in the given sequence):

– If j ą i, then perform the operation Ri Ø Rj.
– Perform the operation p1{xqRi.
– Add the element i to P
– For every integer p satisfying 1 ď p ď m and p ‰ i, let apk denote

the pp, kq entry. For every such p, perform the operation Rp´apkRi.
– Go to Step k ` 1.

Once again, the idea is the same - we try to create a pivot in column k directly
below all the previously pivoted rows. If we find no non-zero entries, we simply
move on to the next column without changing the set P. If we succeed in creating
a pivot, we update the set P and then move on to the next column.

Obviously, this process has to end when we run out of columns. Thus, we have
the last step:

Step m` 1: STOP.

Output: The resulting matrix is the output of this algorithm.
Of course, we need to check that this is a row-reduced echelon matrix.

Example 4.1. We will execute the algorithm on the following matrix:
»

–

1 ´2 1 2
1 1 ´1 1
1 7 ´5 ´1

fi

fl

Step 0: Set P “ H.

Step 1: We are in (Case 2). We observe that j “ 1. Thus we do not need to switch
rows. We first perform the operation p1{1qR1. (Notice that this does nothing, but
we will do it anyway!) This gives us the matrix

»

—

–

1 ´2 1 2
1 1 ´1 1
1 7 ´5 ´1

fi

ffi

fl

and we set P “ t1u.
Now we perform the operations R2´1 ¨R1 and R3´1 ¨R1 to obtain the matrix

»

—

–

1 ´2 1 2
0 3 ´2 ´1
0 9 ´6 ´3

fi

ffi

fl

(Strictly speaking, I should have performed the operations one at a time and written
two matrices.) This concludes Step 1.

Step 1: We are in (Case 2). We observe that i “ 2, j “ 2 and x “ 3. As i “ j, we
do not have to switch rows. We move on to perform the operation p1{3q ¨R2. This
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gives us the matrix
»

—

–

1 ´2 1 2

0 1 ´2{3 ´1{3
0 9 ´6 ´3

fi

ffi

fl

and we set P “ t1, 2u.
Finally, we perform the operation R1´p´2qR2 and R3´9 ¨R2 to get the matrix

»

—

–

1 0 1{3 4{3

0 1 ´2{3 ´1{3
0 0 0 0

fi

ffi

fl

Step 3: We are in (Case 1). So we move on to Step 4.

Step 4: We are in (Case 1). So we move on to Step 5.

Step 5: STOP

Output: The output is the matrix
»

—

–

1 0 1{3 4{3

0 1 ´2{3 ´1{3
0 0 0 0

fi

ffi

fl

which is in row reduced echelon form.



LECTURE 5

Verification and applications of the row reduction
algorithm

We will now verify that the algorithm given above really gives us a row reduced
echelon matrix. Recall that a matrix is said to be in row reduced echelon form if it
satisfies the following conditions:

(a) The leftmost non-zero entry in every row is equal to 1. Such an entry is
called a pivot.

(b) If a column contains a pivot, all other entries in that column are equal to
0.

(c) If i ă j are positive integers, the i-th row contains a pivot in the ki-th
column and the j-th row contains a pivot in the j-th column, then ki ă kj .

(d) All the zero rows (i.e. rows filled with 0’s) occur at the bottom of the
matrix. In other words, no non-zero row occurs below a zero row.

Now let us recall the algorithm. We will write it a little more concisely than
last time.

Input: We are given an mˆn matrix A with entries in R with m and n are positive
integers.

Step 0: Set P “ H.

For 1 ď k ď n, we have the following steps:

Step k: Let i be the smallest positive integer such that i R P. There are two cases
to consider in this step:

(Case 1 ) For every integer l such that i ď l ď m, the pl, kq-entry is equal to 0. In
this case, go to step 3.

(Case 2 ) If the condition in (Case 1) does not hold, let j be the smallest integer
such that i ď j ď m and the pj, kq-entry is non-zero. Denote this entry by
x. Perform the following operations (in the given sequence):

– If j ą i, then perform the operation Ri Ø Rj.
– Perform the operation p1{xqRi.
– Add the element i to P
– For every integer p satisfying 1 ď p ď m and p ‰ i, let apk denote

the pp, kq entry. For every such p, perform the operation Rp´apkRi.
– Go to Step k ` 1.

Step n` 1: STOP

Output: The resulting matrix is the output of this algorithm.

We will now outline an argument showing that the output of this algorithm
satisfies properties (a)-(d) listed above. The proof has not been written out formally

Verifying (a): First let us understand what needs to be verified here. For every k
satisfying 1 ď k ď n, if we are in (Case 2), we create a ‘1’ in the pi, kq-position.
In the previous lecture, we referred to this entry as a “pivot”. However, we never

21
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actually proved that this is a pivot! In other words, we need to verify at the end of
the algorithm, every entry to the left of this one is equal to 0.

For this, we have the following observation:

Observation: Let k be an integer satisfying 1 ď k ď n. Let i be
any integer such that 1 ď i ď m and i is not in P at the end
of Step k. Let j be any integer such that 1 ď j ď k. Then the
pi, jq-entry is equal to 0 at the end of Step k.

Observe that an integer i is in P if at some point in the algorithm, we have
created a ‘1’ in the i-th row through (Case 2) of Step k for some k satisfying
1 ď k ď n. Since we have not actually proved that these entries are pivots, let us
temporary call such rows as “special rows”. Also recall that in Step k, we work on
the entries in column k. The above observation says that at the end of Step k, any
entry that occurs below the special rows and to the left of column k` 1 is equal to
0.

First let us verify this for Step 1. If we are in (Case 1) of Step 1, we end up
with P “ H (so there are no special rows). However, in that case we know that
the first column is entirely filled with zeros. So the above observation is certainly
true in that case. If we are in (Case 2), then we end up with P “ t1u at the end
of Step 1. Thus, the first row is a special row. However, we know that in that case
every term in the first column, except for the topmost term, is equal to 0. Thus,
the observation is verified for Step 1.

Now suppose that we know the observation to be true for Step 1, Step 2... and
so on till Step k. Suppose k ` 1 ď n. Let us verify the observation for Step k ` 1.
Suppose that at the beginning of Step k`1, we have P “ t1, . . . , iu. Thus, the first
i rows are special and we know that any entry which occurs below the first i rows
and within the first k columns is equal to 0. Suppose we are in (Case 1) of Step
k`1. Then that means that every entry below the first i rows and in the pk`1q-th
column is also 0. This verifies the observation in (Case 1). If we are in (Case 2),
then at the end of Step k ` 1, the pi ` 1, k ` 1q-entry is equal to 1 and all entries
below it are 0. Also, now the first i ` 1 rows are special (and P “ t1, . . . , i ` 1u).
It is once again clear that every entry below the first i` 1 rows and within the first
k ` 1 columns is equal to 0. Thus, the observation is true in (Case 2) also. Thus,
we see that the observation remains true at the end of Step k ` 1. This argument
can be repeated for the k ` 2-th column and so on.

This verifies the observation for all k satisfying 1 ď k ď n. (What we have
done above is an example of proof by inducion. We will not discuss the details of
that for now.)

Now, we can use this observation to verify property (a). Suppose that at the
beginning of Step l, we have P “ t1, . . . , iu and we are in (Case 2) and we create a
‘1’ in the pi ` 1, lq-position. Applying the observation with k “ l ´ 1, we see that
all the entries to the left of the pi ` 1q, l position are equal to 0. This shows that
the newly created ‘1’ is a pivot at the end of Step l. However, we should check
that this remains a pivot till the end of the algorithm. Suppose that j ă l. We
want to show that the pi ` 1, jq-entry remains 0 until the end of the algorithm.
However, for all later steps in the algorithm, only change row pi ` 1q by adding a
constant multiple of some lower row (say, row p for p ą i` 1) to the pi` 1q-th row.
However, the pp, jq-entry is known to be 0 by the above observation. Thus, adding
any multiple of this to the pi ` 1, jq-entry is not going to change it. Thus, we see
that the pi` 1, jq-entry remains 0 until the end of the algorithm. In particular, this
verifies property (a) for the output matrix.

Verifying (b): Property (b) is immediately obvious since every time we create a
pivot, we immediately change all other entries in its column to 0. Also, no further
row operations can change them back to something non-zero.
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Verifying (c): Suppose 1 ď i ă j ď m and that the i-th and j-th rows both contain
pivots. It is easy to see from the algorithm that the pivot in the j-th row was
created at a later step of the algorithm than the pivot in the i-th row. So the
column containing the pivot in the j-th row is to the right of the column containing
the pivot in the i-th row.

Verifying (d): In the algorithm, we continue to create pivots in consecutive rows
until we come to a point where we cannot find any non-zero entries below the
“special rows” (i.e. rows with pivots). Thus, all the zero rows must occur below all
the non-zero rows in the output matrix.

Thus, we have now verified that the output matrix is in row-reduced echelon
form.

Applications to solving systems of linear equations: We now return to our
original purpose in studying row reduction – solving systems of linear equations.
As we saw earlier, a system of linear equations of the form

a11X1 ` a12X2 ` ¨ ¨ ¨ ` a1nXn “ b1
a21X1 ` a22X2 ` ¨ ¨ ¨ ` a2nXn “ b2

...
...

...
...

am1X1 ` am2X2 ` ¨ ¨ ¨ amnXn “ bm

can be represented by the augmented matrix

»

—

—

—

—

–

a11 a12 ¨ ¨ ¨ a1n b1
a21 a22 ¨ ¨ ¨ a2n b2
...

...
...

...
am1 am2 ¨ ¨ ¨ amn bm

fi

ffi

ffi

ffi

ffi

fl

Then, we perform the row reduction algorithm on the left block of this augmented
matrix. However, the same row operations should be simultaneously performed on
the right block as well. As a result, we will end up with an augmented matrix in
which the left block is in row reduced echelon form. We then try to solve this row
reduced system of equations.

First of all, we check the equations at the bottom of the row reduced system.
If in any of the equations at the bottom, the left hand side is equal to 0, but the
right hand side is not, the system of equations cannot have any solutions.

So, now suppose that if, in any of the equations at the bottom, the left hand
side is equal to 0, then the right hand side of that equation is also equal to 0. Then,
we shift our focus to the equations in which the left hand side is non-zero.

Each column of the left block corresponds to a variable in the given system
of linear equations. Suppose Xi1 , Xi2 . . . , Xir are the variables corresponding to
the columns which do not have a pivot. To construct a general solution of the
given system, we simply set Xi1 “ t1, Xi2 “ t2, . . . , Xir “ tr where t1, . . . , tr can
take arbitrary values in R. Now, if Xj1 , . . . , Xjx are variables corresponding to the
columns with pivots, of the Xji can occur in exactly one equation each. Also, no
two of them can occur in the same equation. Thus, we can easily solve the equations
for those equations.

Example 5.1. We will solve the system

3X1 ´ 2X2 ` 4X3 ` 7X4 “ 11
X1 ` 5X2 ´ X3 ` 6X4 “ 4
´X1 ` 3X2 ` 3X3 ` 2X4 “ ´1
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using the above method. The augmented matrix representing this system is
»

–

3 ´2 4 7 11
1 5 ´1 6 4
´1 3 3 2 ´1

fi

fl

Step 0: Set P “ H.

Step 1: First perform p1{3qR1.

»

—

–

1 ´2{3 4{3 7{3 11{3
1 5 ´1 6 4
´1 3 3 2 ´1

fi

ffi

fl

This has created a pivot in the first row. So we set P “ t1u. Then we perform the
operations R2 ` p´1qR1 and R3 `R1.

»

—

–

1 ´2{3 4{3 7{3 11{3
0 17{3 ´7{3 11{3 1{3
0 7{3 13{3 13{3 8{3

fi

ffi

fl

This concludes Step 1.

Step 2: Perform p3{17qR2.

»

—

–

1 ´2{3 4{3 7{3 11{3

0 1 ´7{17 11{17 1{17
{0 7{3 13{3 13{3 8{3

fi

ffi

fl

This has created a pivot in the second row. So we set P “ t1, 2u. Then we perform
the operations R1 ` p2{3qR2 and R3 ` p´7{3qR2.

»

—

–

1 0 18{17 47{17 63{17

0 1 ´7{17 11{17 1{17
0 0 90{17 48{17 43{17

fi

ffi

fl

This concludes Step 2.

Step 3: Perform p17{90qR3.

»

—

–

1 0 18{17 47{17 63{17

0 1 ´7{17 11{17 1{17

0 0 1 8{15 43{90

fi

ffi

fl

This creates a pivot in the third row. So, we set P “ t1, 2, 3u. Then we perform
the operations R1 ` p´18{17qR3 and R2 ` p7{17qR3.

»

—

–

1 0 0 11{5 16{5

0 1 0 13{15 23{90

0 0 1 8{15 43{90

fi

ffi

fl

This concludes Step 3.

Step 4: All the rows have pivots. So we are in (Case 1) of Step 4. Thus, we do
nothing and move on.

Step 5: STOP.
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Thus, we now have to solve the system that is represented by the following
augmented matrix:

»

—

–

1 0 0 11{5 16{5

0 1 0 13{15 23{90

0 0 1 8{15 43{90

fi

ffi

fl

Since column 4 has no pivots, we may set X4 “ t. Then the system is reduced to

X1 ` p11{5qt “ 16{5

X2 ` p13{5qt “ 23{90

X3 ` p8{5qt “ 43{90.

Thus, we have the solution set
#

ˆ

16

5
´

11t

5
,

23

90
´

13t

5
,

43

90
´

8t

5
, t

˙

: t P R

+

.





LECTURE 6

Matrix multiplication

Notation: The set of m ˆ n matrices with entries from R will be denoted by
MmˆnpRq. (Similarly, we can denote the set of matrices with entries from the ra-
tional numbers, integers, etc. by MmˆnpQq, MmˆnpZq, etc. respectively. However,
for now, we will only work with matrices having entries from R.) If A is an mˆ n
matrix and the pi, jq-entry of which is aij , we will express this briefly as

A :“ paijq1ďiďm,1ďjďn.

If the number or rows and columns of A is understood from the context, we will
simply write A :“ paijqi,j .

We will discuss some basic operations on matrices.

Addition of matrices: The sum of matrices is defined only if they are of the same
shape, i.e. if they have the same number of rows and columns. Let A “ paijqi,j
and B :“ pbijqi,j be two mˆ n matrices. Their sum is defined to the mˆ n matrix
C “ pcijqi,j where cij “ aij ` bij . Example:

„

2 3 0
´1 1 2



`

„

´1 2 7
3 4 5



“

„

2` p´1q 3` 2 0` 7
´1` 3 1` 4 2` 5



“

„

1 5 7
2 5 7



Let 0mˆn denote the m ˆ n matrix in which every entry is equal to 0. (Again, if
the shape of the matrix is clear from the context, we may just write 0 instead of
0mˆn.) If A “ paijqi,j , let ´A denote the matrix (of the same shape) given by
´A “ p´aijqi,j . Then the following properties are easy to verify:

(i) A`B “ B `A. (“Addition is commutative.”)
(ii) pA`Bq ` C “ A` pB ` Cq. (“Addition is associative.”)
(iii) A` 0` 0`A “ A. (“0 is the identity for addition.)
(iv) A` p´Aq “ p´Aq `A “ 0. (“´A is the additive inverse of A.)

Matrix Multiplication:

Definition 6.1. Let A “ paijqi,j be an mˆn matrix and let B “ pbijqi,j be an
nˆ p matrix. We define the product AB to be an mˆ p matrix C “ pcijqi,j where

cij “ ai1b1j ` ai2b2j ` ¨ ¨ ¨ ` ainbnj “
n
ÿ

k“1

aikbkj .

Observe that the product AB of two matrices A and B is defined only if the
number of columns of A is equal to the number of rows of B. In other words, the
length of every row of A needs to be equal to the length of every column of B. If
this condition is met, the pi, jq-entry of the product is computed using the i-th row
of A and the j-th column of B.

Example 6.2. When it comes to the matrix product, the order in which the
matrices are written is extremely important. So AB and BA mean very different
things. Indeed, while the product AB may be well-defined, the product BA may

27
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not be defined since the number of columns of B may not be equal to the number
of rows of A. For instance, consider the following product:

»

–

2 1
0 ´3
´1 1

fi

fl

„

3 4
5 6



“

»

–

11 14
´15 ´18

2 2

fi

fl

This product is well-defined because the number of columns in the matrix on the
left is equal to the number or rows in the matrix on the right. However, the product

„

3 4
5 6



»

–

2 1
0 ´3
´1 1

fi

fl

is not defined.
Even if BA is defined, there is no reason for it to be equal to AB (except in

some very rare cases). For instance the products

“

1 1
‰

„

1
1



“
“

2
‰

and
„

1
1



“

1 1
‰

“

„

1 1
1 1



are both defined, but they are clearly not equal since they are matrices of different
shapes.

However, even if both the products AB and BA are defined and are of the same
shape, they may still be unequal. For instance

„

1 1
0 1

 „

1 1
1 1



“

„

2 2
1 1



but
„

1 1
1 1

 „

1 1
0 1



“

„

1 2
1 2



Definition 6.3. Let n be a positive integer. The nˆn matrix identity matrix
In is defined by In “ pδijqi,j where

δij “

#

1 for i “ j

0 otherwise.

In other words, this is the nˆ n square matrix having 1’s on the diagonal and
0’s in all other positions.

We now list some basic properties of matrix multiplication. We will only prove
the first property (which is perhaps the hardest of the lot) in detail. You may verify
the rest.

(1) Suppose A is an mˆn matrix, B is a nˆp matrix and C is a pˆq matrix.
Then ApBCq “ pABqC.

Proof. Let A “ paijqi,j , B “ pbijqi,j and C “ pcijqi,j . We wish
to show that the matrices ApBCq and pABqC are identical. It suffices to
show that for each pair pi, jq with 1 ď i ď m and 1 ď j ď q, the pi, jq-entry
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of ApBCq is equal to the pi, jq-entry of pABqC.

pi, jq ´ entry of ApBCq “
n
ÿ

k“1

aik ¨ ppk, jq ´ entry of BCq

“

n
ÿ

k“1

aik

¨

˝

p
ÿ

l“1

bklclj

˛

‚

“

n
ÿ

k“1

¨

˝

p
ÿ

l“1

aikbklclj

˛

‚

“
ÿ

1ďkďn,1ďlďp

aikbklclj

“

p
ÿ

l“1

¨

˝

n
ÿ

k“1

paikbkl

˛

‚clj

“

p
ÿ

l“1

ppi, lq ´ entry of ABq ¨ clj

“ pi, jq ´ entry of pABqC

This proves that ApBCq “ pABqC. �

(2) Suppose A is an mˆ n matrix and B,C are nˆ p matrices. Then

ApB ` Cq “ AB `AC.

(3) Suppose A,B are mˆ n matrices and C is an nˆ p matrix Then

pA`BqC “ AC `BC.

(4) Suppose A is an mˆ n matrix. Then

ImA “ A “ A ¨ In.

Property (1) is usually phrased as “matrix multiplication is associative”. Prop-
erty (2) and (3) say that “matrix multiplication is distributive over matrix addition”.

Using matrix multiplication to represent matrix multiplication:
Consider the following system of linear equations:

a11X1 ` a12X2 ` ¨ ¨ ¨ ` a1nXn “ b1
a21X1 ` a22X2 ` ¨ ¨ ¨ ` a2nXn “ b2

...
...

...
...

am1X1 ` am2X2 ` ¨ ¨ ¨ amnXn “ bm

Let A denote the mˆn matrix paijqi,j . Let X denote the nˆ1 matrix having Xi in
the pi, 1q-position. Let B denote the m ˆ 1 matrix having bi in the pi, 1q-position.
Then, the above system of equation can be concisely expressed as the single matrix
equation

AX “ B.

Computationally, this does not necessarily make it any easier to solve the system of
equations. However, this is a good book-keeping tool and will help us conceptually
understand the situation better in later lectures.

Row operations as matrix multiplication:
Let A “ paijqi,j be an mˆ n matrix and let 1 ď k ď m, 1 ď l ď m with k ‰ l.

Let x be a real number. Let B “ pbijqi,j be the matrix obtained by performing the
operation Rk ` xRl on A. Recall that Im denotes the mˆm identity matrix. Let
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E “ pεijqi,j be the matrix obtained by performing the operation Rk ` xRj on Im.
Then εij is given as follows:

εij “

$

’

’

&

’

’

%

1 for i “ j

x for i “ k, j “ l

0 otherwise.

We compute the pi, jq-entry of the product EA. Suppose i ‰ k. Then

pi, jq ´ entry of EA “
m
ÿ

p“1

εipapj

If i ‰ k, then εii “ 1 for and εip “ 0 for i ‰ p. Thus, we have

pi, jq ´ entry of EA “ aij

For i “ k, we have εkk “ 1, εkl “ x and εkp “ 0 for all other values of p. Thus,

pk, jq ´ entry of EA “ 1 ¨ akj ` x ¨ alj .

However, by definition

bij “

#

aij for i ‰ k

akj ` xalj for i “ k.

Thus, we see that EA “ B.
By similar arguments, one can show that a similar result holds for the other

elementary row operations as well. So we have the result

Theorem 6.4. Let A be an m ˆ n matrix. Let B be the matrix obtained by
performing a certain elementary row operation on A. Let E be the matrix obtained
by performing the same operation on Im. Then we have

B “ EA.



LECTURE 7

Invertible matrices

In the last lecture, we saw that performing an elementary row operation on a
matrix is equivalent to multiplying it on the left by a specially constructed matrix.
We will first obtain an easy generalization of this to multiple row operations.

Theorem 7.1. Let A be an m ˆ n matrix. Let Op1, Op2, . . . , Opk denote el-
ementary row operations and let B be the matrix obtained from A by performing
these operations in the given order. For every i, 1 ď i ď k, let Ei denote the matrix
obtained by performing the operation Opi on Im. Then, we have

B “ Ek ¨ ¨ ¨E1 ¨A.

Proof. Let B1 be the matrix obtained from A by performing the operation
Op1. For each i, 2 ď i ď k, let Bi be the matrix obtained from Bi´1 by performing
the operation Opi. Thus, we see that Bk is the matrix obtained by performing the
operations Op1, Op2, . . . , Opk successively on A. Thus, Bk “ B.

By Theorem 6.4, B1 “ E1A and Bi “ EiBi´1 for every i, 2 ď i ď k. Thus,

B “ Bk “ EkBk´1

“ EkEk´1Bk´2

pand so onq

“ Ek ¨ ¨ ¨E1A.

This proves our result. �

Remark 7.2. It is generally not good practice to write a mathematical argu-
ment with phrases like “and so on” since they are far too vague. Strictly speaking,
an argument with such phrases would not be considered rigorous. However, this
argument can be made rigorous by using the principal of mathematical induction.
For now, this informal argument will suffice for our purposes.)

In the context of the above proof, let E be the matrix Ek ¨ ¨ ¨E1. Thus, B “ EA.
Since

E “ Ek ¨ ¨ ¨E1 ¨ Im,

the above theorem implies that the matrix E can be obtained by performing the
operations Op1, . . . , Opk on the matrix Im. Thus, the above theorem could be
restated as follows:

Theorem 7.3. Let A be an m ˆ n matrix. Let Op1, Op2, . . . , Opk denote ele-
mentary row operations and let B be the matrix obtained from A by performing these
operations in the given order. Let E be the matrix obtained from Im by performing
the same operations in the given order. Then, we have

B “ E ¨A.

Recall that given any matrix A, one can perform a sequence of elementary row
operations on it and transform it into a row reduced echelon matrix. Thus, the
above theorem has the following corollary:

31
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Corollary 7.4. For any A P MmˆnpRq, there exists a matrix E P MmˆnpRq
such that EA is in row reduced echelon form. Also, E is of the form E1 ¨ ¨ ¨Ek where
each Ei can be obtained from In by an elementary row operation.

Remark 7.5. One can easily prove an analogue for “column operations”. First,
of course, we need to define elementary column operations which are analogous to
the elementary operations. I will leave that as an easy exercise. Then one can prove
that if B is obtained from A by a sequence of elementary column operations, then
B “ AE where E is obtained from In by the same column operations. The proof
is entirely similar to the one given above.

Invertible matrices:
In the previous lecture, we saw that a system of m linear equations in n variables

and real coefficients can be represented by a single matrix equation of the form
AX “ B where A is a m ˆ n matrix with real entries, X is an n ˆ 1 matrix with
variable entries, and B is an m ˆ 1 matrix with real entries. If one momentarily
forgets that these are matrices, one might be tempted to divide by A on both sides
to compute the value of X. Of course, we cannot always do this since it is not
possible to “divide” by a matrix in general. However, we will now try to see when
this does make sense.

What does it mean to “divide” by a number c? To divide by c is the same
as multiplying by 1{c, which is called the multiplicative inverse of c. What is the
multiplicative inverse of c? It is the unique number such that its product with c is
equal to 1. We will try to create an analogous concept for a matrix A. However,
we run into a small obstacle when we try to define the multiplicative inverse of a
matrix. The role of 1 is played by the identity matrix. For a matrix B to be the
multiplicative inverse of A, should we require AB to be equal to the identity matrix
or should we require BA to be equal to the identiy matrix?

The situation is further complicated by the fact that there are identity matrices
of different sizes. If A is an m ˆ n matrix, the matrix AB can be a square matrix
only if B is an nˆm matrix. In this case, AB will be an mˆm matrix. Similarly,
BA can be a square matrix only if B is an nˆm matrix, but in this case, BA will
be an n ˆ n matrix. So should we require that AB “ Im and BA “ In? As it
turns out, if m ‰ n, there cannot exist a matrix B with such properties. (This will
become clear later in the course.) Hence, we will only focus on square matrices.

Definition 7.6. Let n be a positive integer and let A PMnˆnpRq.
(1) A matrix B PMnˆnpRq is said to be the left inverse of A if BA “ In.
(2) A matrix B is said to be the right inverse of A if AB “ In.
(3) A matrix B is said to be the inverse of A if it is both the left inverse as

well as the right inverse of A. If a matrix A has an inverse, we say that it
is invertible.

Thus, a priori, it seems as if we have defined three concepts. However, we will
see that these notions are the same.

Lemma 7.7. Suppose A PMnˆnpRq has a left inverse B and a right inverse C.
Then B “ C.

Proof. By definition, we have BA “ In and AC “ In. Thus,

B “ BIn “ BpACq “ pBAqC “ InC “ C.

�

Lemma 7.8. Suppose a matrix A has a left inverse B. Then, for any matrix
Y PMnˆ1pRq, there exists a matrix X PMnˆnpRq such that AX “ Y .
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Proof. We will prove this by contradiction. Suppose Y is such that there is
no X for which AX “ Y . Suppose A “ paijqi,j and Y “ pyjqj,1. To find an X such
that AX “ Y is equivalent to finding a solution to the following system:

a11X1 ` a12X2 ` ¨ ¨ ¨ ` a1nXn “ y1
a21X1 ` a22X2 ` ¨ ¨ ¨ ` a2nXn “ y2

...
...

...
...

an1X1 ` an2X2 ` ¨ ¨ ¨ annXn “ yn

Thus, if we assume that there does not exist any such X, we conclude that the
above system has no solutions.

Let us recall how we solve systems of linear equations. We form the augmented
matrix rA|Y s and perform row operations on it to transform A into a row reduced
echelon matrix. Suppose that these operations turn the augmented matrix rA|Y s
into the augmented matrix rB|Y 1s where B is in row reduced echelon form. Then,
we know that the system fails to have a solution only if B has at least one zero row
and Y 1 has a non-zero entry in the corresponding row. Thus, we see that the row
reduced form of A has a zero row at the bottom.

Now consider the following system:

a11X1 ` a12X2 ` ¨ ¨ ¨ ` a1nXn “ 0
a21X1 ` a22X2 ` ¨ ¨ ¨ ` a2nXn “ 0

...
...

...
...

an1X1 ` an2X2 ` ¨ ¨ ¨ annXn “ 0

Once again, we transform the system using the row reduction algorithm. This time,
we end up with the augmented matrix rB|0s where 0 denotes the n ˆ 1 matrix in
which every entry is equal to 0. Clearly, this system always has a solution. Moreover,
note that B has at most n´ 1 pivots. Since it has n columns, it follows there exists
a column which does not have a pivot. The variable corresponding to this column
can take arbitrary values (i.e. it is a free variable). Thus, we see that there exists
an nˆ 1 matrix K such that K ‰ 0, but AK “ 0.

However, now observe that

K “ InK “ pBAqK “ BpAKq “ B0 “ 0.

This is a contradiction since we know that K ‰ 0. This shows that our initial
assumption, that there exists no X for which AX “ Y , must be wrong. This proves
the lemma. �

Lemma 7.9. Let J P MnˆnpRq be such that for any X P Mnˆ1pRq, we have
JX “ X. Then J “ In.

Proof. Let Ei P Mnˆ1pRq be the matrix having 1 in the i-th row and 0
elsewhere. Then it is easy to check that JEi is equal to the i-th column of J (check
this!). By assumption, JEi “ Ei. Thus, Ei is the i-th column of J for every i. This
shows that J “ In. �

Proposition 7.10. Suppose A P MnˆnpRq has a left inverse B. Then B is
also a right inverse for A.

Proof. Choose any Y P Mnˆ1pRq. By Lemma 7.8, there exists an X P

Mnˆ1pRq such that AX “ Y . Since BA “ In, we have

X “ InX “ pBAqX “ BY .

Thus,

pABqY “ ApBY q “ AX “ Y .

By Lemma 7.9, we see that AB “ In. �
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Corollary 7.11. Suppose A P MnˆnpRq has a right inverse B. Then B is
also a left inverse for A.

Proof. Since AB “ In, A is a left inverse for B. Thus, by Proposition 7.10,
A is also a right inverse for B. Hence BA “ In. �

This shows that for square matrices, the notions of left inverse, right inverse and
inverse are all equivalent. (Please note that this only happens for square matrices!)

Now let us note some basic properties of inverses.

Lemma 7.12. Let A P MnˆnpRq and let B1 and B2 be inverses of A. Then
B1 “ B2.

Proof. B1 “ InB1 “ pB2AqB1 “ B2pAB1q “ B2In “ B2. �

Thus, if a matrix has an inverse, it is unique. This justifies the following
notation:

Notation 7.13. Let A PMnˆnpRq. If the inverse of A exists, it will be denoted
by A´1.

Lemma 7.14. Suppose A and B are invertible matrices. Then AB is also in-
vertible and pABq´1 “ B´1A´1.

Proof. pB´1A´1qpABq “ B´1pAA´1qB “ B´1InB “ BB´1 “ In. �

Lemma 7.15. Let E be a matrix obtained from In by performing an elementary
row operation. Then E is an invertible matrix.

Proof. Suppose E is obtained from In by performing a certain elementary
row operation Op1. Recall that the elementary row operations are reversible. Thus,
there exists an elementary row operation Op2 such that if Op1 and Op2 are both
performed on a matrix, the matrix remains unchanged. Let E1 by the matrix
obtained by applying Op2 on In. Thus, we see that for any matrix A (which has
n rows), we have EE1A “ A. In particular, taking A “ In, we see that EE1 “ In.
Thus, E is invertible. �

Lemma 7.16. Let A P MnˆnpRq be a row reduced echelon matrix. Then the
following two conditions are equivalent:

(1) A “ In.
(2) A has no zero rows.

Proof. Clearly, if A “ In, it has no zero rows. Thus, p1q ùñ p2q.
Suppose A has no zero rows. Then every row has a pivot. Thus, the number

of pivots is equal to n. Thus every column also has a pivot. The only n ˆ n row
reduced echeleon matrix having a pivot in every row and every column is In. (Do
you see why?) �

Theorem 7.17. Let A PMnˆnpRq and let B be the row reduced echelon matrix
obtained from A by a sequence of elementary row operations. Then A is invertible
if and only if B “ In.

Proof. We saw in Corollary 7.4 that B is of the form EA for some E “

E1 ¨ ¨ ¨Ek, where each Ei has been obtained from In by an elementary row operation.
By Lemma 7.15, we know that each Ei is invertible. By Lemma 7.14, E is invertible.

First suppose that B “ In. Then A “ EB “ EIn “ E, which is invertible.
This proves one half of our theorem.

On the other hand, suppose A is invertible. Then if B ‰ In, by Lemma 7.16,
B must have a zero row. By the definition of matrix product, for any matrix C,
the matrix BC must have a zero row. Thus BC ‰ In. Thus B is not invertible.
However, as we saw above, B “ EA where E is invertible. As A is assumed to be



7. INVERTIBLE MATRICES 35

invertible, Lemma 7.14 implies that B is also invertible. This is a contradiction.
Thus, B “ In. This completes the proof of the theorem. �

This gives us an algorithm to check whether a given matrix is invertible and
also to compute its inverse if it exists. Indeed, given any A P MnˆnpRq we use the
row reduction algorithm to transform it into a row reduced echelon matrix B. If
B ‰ In, we may conclude that A is not invertible. If B “ In, we look at the list
of elementary row operations which were used to transform A into In and perform
them in the same order on In. If In is transformed into B by these operations, it
follows that B “ A´1.





LECTURE 8

Determinants

Note: The notes for this lecture are somewhat demanding and contain far more
details than were presented in the lecture. However, you may choose to ignore the
proofs for now if they seem too long and demanding. You may simply focus on
understanding the definitions and the statements of the results.

For any square matrix with entries in R, we can associate a real number which is
called the determinant of a matrix. Thus, for any positive integer n, the determinant
is a function from MnˆnpRq to R. This function has some important properties,
which we will now explore. However, the proofs of these properties will involve a
technique called the principle of mathematical induction. If you are not familiar
with the technique of mathematical induction, you may review the appendix at the
end of this lecture.

There are many ways to define determinants. We will choose to define them by
a formula. The formula for the determinant of the n ˆ n matrix is given in terms
of the determinant of the pn´ 1qˆ pn´ 1q matrix. Thus, the definition is inductive
in nature.

Definition 8.1. Let n ě 1 be an integer. Let A P MnˆnpRq. We define the
determinant of A, denoted by detpAq as follows:

(1) Suppose n “ 1. Then A “ ras for some a P R. In this case, we define
detpAq “ a.

(2) Suppose that determinants have been defined for pn´1qˆpn´1q matrices.
For the given matrix A “ paijqi,j for any pair of indices i, j satisfying
1 ď i, j ď n, let Aij denote the pn ´ 1q ˆ pn ´ 1q matrix obtained by
deleting the i-th row and j-th column of A. Then, we define

detpAq “ a11 detpA11q ´ a12 detpA12q ` ¨ ¨ ¨ ` p´1qn´1 detpA1nq

“

n
ÿ

i“1

p´1qi´1a1i detpA1iq.

Given a matrix A, any matrix obtained by deleting some of its rows and columns
is said to be a minor of A. Hence, the above formula is called the formula for
expansion by minors. We have used terms in the first row and the minors obtained
by deleting the row and column containing each of those terms. Hence, we say
that this is the formula for expansion of the determinant by the first row. One can
also write down the formula for expansion by any of the other rows or even by
any column of the matrix. We will look into this later. For now, the formula for
expansion by the first row is our definition of the determinant.

Examples 8.2. We will interpret the formula for small values of n.

(1) For n “ 1, there is not much to see: detprasq “ a.

(2) Let A “

„

a b
c d



be a 2ˆ 2 matrix. Then, by definition

detpAq “ a ¨ detprdsq ´ b ¨ detprcsq

“ ad´ bc.

37
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(3) Now let us look at the case n “ 3.

A “

»

–

a11 a12 a13
a21 a22 a23
a31 a32 a33

fi

fl

By definition

detpAq “ a11 det

„

a22 a23
a32 a33



´ a12 det

„

a21 a23
a31 a33



` a13 det

„

a21 a22
a31 a32



“ a11pa22a33 ´ a23a32q ´ a12pa21a33 ´ a23a31q ` a13pa21a32 ´ a22a31q.

Before we state the basic properties of the determinant, let us observe something
about the formula. First let us count the number of terms in the expansion. Suppose
that the number of terms in the expansion of the n ˆ n determinant is fpnq. The
number of terms in the expansion of A is equal to the sum of the number of terms
in the expansion of A11, A12, . . . , A1n. Thus, we see that fpnq “ n ¨ fpn´ 1q. Using
the principle of induction, one can prove from this that

fpnq “ 1ˆ 2ˆ 3ˆ ¨ ¨ ¨ ˆ n.

This number is denoted by n! (read as “n factorial”).
Secondly, observe that each of the n! terms is a product of entries of the matrix.

How many entries appear in each product? The number of entries appearing in the
terms in the expansion of A is exactly one more than the number of entries appearing
in the expansions of A11, A12, etc. Thus, using the principle of induction, we may
verify that each of the n! terms in the expansion of the determinant of an n ˆ n
matrix is the product of exactly n terms.

Our third observation is a little more interesting. In each of the n! terms, there
is exactly one term from each row and exactly one term from each column. You can
verify this easily using induction. As an example, look at the two terms appearing
in the expansion of the 2 ˆ 2 matrix. The first term is a11a22. Here a11 appears
in the first row and a22 appears in the second row. Also a11 appears in the first
column and a22 appears in the second column. Thus, the first term certainly has
the above-mentioned property. You can also easily verify this for the term a12a21.

We summarize our observations:

(Ob1) The expansion of the determinant of an nˆn matrix has exactly n! terms.
(Ob2) Each of the n! terms is a product of exactly n entries of the matrix.
(Ob3) Each term has exactly one entry from each row and exactly one entry from

each column.

We will now derive some basic properties of determinants. The proofs of some
of these statements are deliberately a little sketchy. While they are essentially
complete, I have avoided writing everything in complete detail since it will make
the topic seem too burdensome. However, if you are interested, you should be able
to write complete versions of the proofs based on what is written below.

Lemma 8.3. detpInq “ 1.

Proof. This is an easy consequence of the definition. To prove it rigorously,
one may use induction on n. I will leave this as an exercise. �

Lemma 8.4. Let A PMnˆnpRq and let B be the matrix obtained by multiplying
one of the rows or one of the columns of A by some x P R. Then detpBq “ xdetpAq.

Proof. This follows from (Ob3). �

Notice that this tells us that if any single row or column of a matrix has only
zero entries, the determinant of the matrix is equal to 0.
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Lemma 8.5. Suppose B and C are two n ˆ n matrices. Let 1 ď i ď n and
suppose that for any j ‰ i, the j-th rows of B and C is identical. Suppose that A
is the nˆ n matrix such that:

(1) for every j ‰ i, the j-th row of A is equal to the j-th row of B (and hence
also of C), and

(2) the i-th row of A is equal to the (term by term) sum of the i-th rows of B
and C.

Then detpAq “ detpBq ` detpCq.

For the sake of clarity, let us write down an example with 3 ˆ 3 matrices.
Suppose

B “

»

–

a11 a12 a13
b21 b22 b23
a31 a32 a33

fi

fl ,

C “

»

–

a11 a12 a13
c21 c22 c23
a31 a32 a33

fi

fl

and

A “

»

–

a11 a12 a13
b21 ` c21 b22 ` c22 b23 ` c23
a31 a32 a33

fi

fl .

Then, the lemma says that detpAq “ detpBq ` detpCq.

Proof. This lemma too follows from (Ob2). Indeed, suppose that in the ex-
pansion of the determinant of A, there exists a term that contains the pi, jq-entry
of A. Note that this term cannot contain any other entry from the i-th row or j-th
column. Thus, this entry looks like xpbij`cijq where x is a product of entries which
do not lie in the i-th row or j-th column. But then for any j ‰ i, the j-th rows of
A, B and C are identical. Thus, the terms xbij and xcij occur in the expansions of
the determinants of B and C respectively. The equality detpAq “ detpBq ` detpCq
can be proved by matching the terms on both sides in this manner. �

The analogous statement for columns is also true and the proof is identical.
Lemmas 8.4 and 8.5 are expressed by saying that “the determinant is linear in the
rows of the matrix”. The word “linear” refers to the fact that the entries from every
row only occur with degree 1 in each term in the expansion of the product (which
is the fact which was crucially used in the proofs of these lemmas).

We now wish to prove that if two rows of the matrix are switched, the determi-
nant changes sign (i.e. it gets multiplied by p´1q). The proof of this fact is a little
harder and so we will go about it in steps. Let us fix two indices i and j, satisfying
1 ď i, j ď n and i ‰ j. Consider the following two statements:

(Alt1) If the matrix B is obtained from the matrix A by interchanging the i-th
and j-the rows, then detpAq “ ´detpBq.

(Alt2) If the i-th and j-th rows of a matrix A are identical, then detpAq “ 0.

We will observe that these two statements are equivalent, i.e. they imply each
other. To show this, let us write the matrices as columns in which the entries are
actually rows of the matrix. Thus, the matrix A is written as

A “

»

—

—

—

—

–

R1

R2

...
Rn

fi

ffi

ffi

ffi

ffi

fl
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where Ri is the row pai1, . . . , ainq. Let us show the equivalence of (Alt1) and (Alt2)
assuming i “ 1 and j “ 2 (the proof of the general case is absolutely identical).

The proof of (Alt1) ùñ (Alt2) is very easy. Indeed, let us assume (Alt1) and
suppose that the first and second rows of A are identical and that B is obtained
by interchanging them. Then B “ A, but (Alt1) implies that detpAq “ ´detpBq.
Thus, detpAq “ ´ detpAq which implies that detpAq “ 0.

Now assume (Alt2). Then let C be the following matrix:

C “

»

—

—

—

—

–

R1 `R2

R1 `R2

...
Rn

fi

ffi

ffi

ffi

ffi

fl

By Lemma 8.5, we see that

detpCq “ det

»

—

—

—

—

–

R1

R1 `R2

...
Rn

fi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

–

R2

R1 `R2

...
Rn

fi

ffi

ffi

ffi

ffi

fl

.

Again, by Lemma 8.5,

det

»

—

—

—

—

–

R1

R1 `R2

...
Rn

fi

ffi

ffi

ffi

ffi

fl

“ det

»

—

—

—

—

–

R1

R1

...
Rn

fi

ffi

ffi

ffi

ffi

fl

` det

»

—

—

—

—

–

R1

R2

...
Rn

fi

ffi

ffi

ffi

ffi

fl

.

Here, the first term is equal to 0 since we are assuming (Alt2). Thus,

det

»

—

—

—

—

–

R1

R1 `R2

...
Rn

fi

ffi

ffi

ffi

ffi

fl

“ detpAq.

By a similar argument

det

»

—

—

—

—

–

R2

R1 `R2

...
Rn

fi

ffi

ffi

ffi

ffi

fl

“ detpBq.

Thus, detpCq “ detpAq`detpBq. However, since C has two identical rows, we know
that detpCq “ 0. Thus detpAq “ ´ detpBq. Thus, we see that (Alt2) implies (Alt1).

Thus, it will suffice to prove (Alt2) for any pair of indices pi, jq. To begin with,
we prove it for adjacent pairs, i.e pairs of the form pi, i` 1q.

Lemma 8.6. If two adjacent rows of an n ˆ n matrix A are identical, then
detpAq “ 0.

Proof. This statement is proved by induction on n. The statement does not
have much relevance to the case n “ 1, and so we look at the case n “ 2. It is
easy to verify by explicit calculation that if a 2 ˆ 2 matrix has identical rows, its
determinant is equal to 0.

Now suppose that the result is known for pn´ 1q ˆ pn´ 1q matrices. Suppose
that the i-th and pi`1q-th rows are identical. If i ą 1, this immediately implies that
in the matrices A1i, two adjacent rows are identical. Then, the induction hypothesis
says that detpA1iq “ 0 for every i and so detpAq “ 0.
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Suppose that the first and second rows are identical. For any pair i, j satisfying
1 ď i, j ď n and i ‰ j, let Bij denote the pn´2qˆpn´2q minor obtained by deleting
the rows 1 and 2 and the columns i and j of A. Then, the expansion of a1i detpA1iq

contains the term a1ia2j detpBijq and the expansion of a1j detpA1j contains the term
a1ja2i detpBijq. But as the first two rows are assumed to be identical, we see that
a1i “ a2i and a1j “ a2j . Thus, the terms a1ia2j detpBijq and a1ja2i detpBijq are
identical. If one can check that they come with opposite signs, it will follow that
they cancel each other out. I will leave this as an interesting exercise. (Drawing a
picture of the matrix may help you figure this out.) In this manner, one can show
that all the terms cancel out and so detpAq “ 0. �

As we have already proved that (Alt2) implies (Alt1) for any pair of indices,
we have also obtained the following lemma:

Lemma 8.7. Let A be an n ˆ n matrix and suppose B is obtained from A by
switching two adjacent rows. Then detpAq “ ´detpBq.

Now, suppose we want to switch two non-adjacent rows. This can be achieved
by successively switching adjacent pairs. For instance, suppose a matrix has three
rows and I want to switch the first and the third row. This can be achieved by
switching in the following manner.

»

–

R1

R2

R3

fi

fl ù

»

–

R2

R1

R3

fi

fl ù

»

–

R2

R3

R1

fi

fl ù

»

–

R3

R2

R1

fi

fl

Observe that this required an odd number of adjacent row switches. For each switch
the sign of the determinant changed once. Thus, we finally end up with a minus
sign.

Suppose we wish to switch the i-th row and the j-th row with i ă j. We start
by switching the i-th row with the pi`1q-th row and keep switching it forward until
it gets to the j-place. This requires pj ´ iq adjacent row switches. At this point,
the j-th row will be in the pj ´ 1q-th place. Thus, to move it to the i-th place will
require pj ´ 1 ´ iq adjacent row switches. Thus, we need a total of 2pj ´ 1q ´ 1
adjacent row switches to switch the i-th and j-th row. As this is an odd number,
we finally end up with a minus sign. This shows that

Lemma 8.8. Let A be an n ˆ n matrix and suppose B is obtained from A by
switching any two rows. Then detpAq “ ´detpBq.

As we have observed, (Alt1) implies (Alt2) for any pair of indices. Thus, we
also obtain

Lemma 8.9. If any two rows of an nˆn matrix A are identical, then detpAq “ 0.

Observe that we have seen what two of the elementary row operations do to
the determinant of a matrix. Now let us look at the last remaining operation:

Lemma 8.10. Let A be an n ˆ n matrix and let B by obtained from A by
performing the operation Ri ` xRj for some x P R. Then detpBq “ detpAq.

Proof. We will write the proof for i “ 1 and j “ 2. The proof in the general
case is entirely identical. As before, we write the matrices as columns in which the
entries are the rows of the matrices.

B “

»

—

—

—

—

–

R1 ` xR2

R2

...
Rn

fi

ffi

ffi

ffi

ffi

fl
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Now we use Lemma 8.5 to obtain the following equality:

det

»

—

—

—

—

–

R1 ` xR2

R2

...
Rn

fi

ffi

ffi

ffi

ffi

fl

“ det

»

—

—

—

—

–

R1

R2

...
Rn

fi

ffi

ffi

ffi

ffi

fl

` det

»

—

—

—

—

–

xR2

R2

...
Rn

fi

ffi

ffi

ffi

ffi

fl

“ detpAq ` det

»

—

—

—

—

–

xR2

R2

...
Rn

fi

ffi

ffi

ffi

ffi

fl

Now, observe that by Lemma 8.4, we have

det

»

—

—

—

—

–

xR2

R2

...
Rn

fi

ffi

ffi

ffi

ffi

fl

“ x ¨ det

»

—

—

—

—

–

R2

R2

...
Rn

fi

ffi

ffi

ffi

ffi

fl

which is equal to 0 by Lemma 8.9. �

Thus, we now know how various row operations affect the determinant:

(1) Adding a constant multiple of a row to another leaves the determinant
unchanged.

(2) Multplying one of the row by a constant x has the effect of multiplying
the determinant by x. (This works even if x “ 0.)

(3) Switching two rows has the effect of multiplying the determinant by ´1.

Note that we have observed the analogue of (2) for columns as well. Actually
the analogues of (1) and (2) also hold for columns, as we will see later.

8.A. Mathematical Induction

Suppose we want to prove the following statement:

For any positive integer n, the sum of all integers i satisfying
1 ď i ď n is npn` 1q{2.

Since this is a statement about the integer n, we call this statement P pnq. Let us
see how we could prove this statement. We observe that

1` 2` ¨ ¨ ¨ ` n “ p1` 2` ¨ ¨ ¨ ` pn´ 1qq ` n.

Suppose we assume that P pn´1q is true. In other words, suppose we already know
that

1` 2` ¨ ¨ ¨ ` pn´ 1q “
pn´ 1qpn´ 1` 1q

2
“
npn´ 1q

2
.

Then,

1`2`¨ ¨ ¨`n “ p1`2`¨ ¨ ¨`pn´1qq`n “
npn´ 1q

2
`n “ np

n´ 1

2
`1q “

npn` 1q

2
.

Note that this is not a proof of the statement P pnq yet. We have only proved that
if the statement P pn´ 1q is true, then the statement P pnq is also true.

So, suppose I want to check whether P p5q is true. The above argument tells
me that it would be enough to verify P p4q. But then to verify P p4q, it would be
enough to very P p3q. To verify P p3q it would be enough to verify P p2q. To verify
P p2q it would be enough to verify P p1q. But P p1q is very easy to verify. Indeed, it
just says that 1 “ 1, which is evidently true. Thus, we conclude that P p5q is true.

Intuitively, it is clear that this method can be applied to prove P pnq for any n.
For instance, if I want to prove P p100q, I would have to write the following:

To verify P p100q, it is enough to verify P p99q. To verify P p99q, it is enough to
verify P p98q. . . . (and so on, through all integers between 100 and 1 ) . . . To verify
P p2q it is enough to verify P p1q. But P p1q states 1 “ 1, which is evidently true.

The argument will get longer as we try to prove P pnq for larger and larger
numbers, but the method of proof is quite clear and it is “obvious” that it will
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work. However, one must admit that as a written proof, it is not rigorous. The
phrase ”and so on” might be enough to convince you of the validity of the argument,
but it does not represent a complete argument.

Mathematical induction is a principle that allows us to make this rigorous. The
principle can be stated as follows:

Mathematical Induction: Let Spnq be a statement about the in-
teger n. Suppose that the statement Spk0q is known to be true
for an integer k0. Suppose it is also known that for any k ą k0,
the statement Spkq implies the statement Spk ` 1q. Then, the
statement Spnq is true for all integers n ě k0.

Clearly, if we accept this principle as rigorous, the above argument with the
phrase “and so on” can be rewritten in a rigorous form. This principle is a fun-
damental property of the integers. A discussion of why this principle should be
accepted would lead us into the question of what the integers really are. We will
not treat this issue in this course. We will simply accept this principle as a fact and
use it in our proofs. As an example, we prove the following rigorously:

Theorem. For any positive integer n, the sum of all integers i satisfying 1 ď
i ď n is npn` 1q{2.

Proof. We will prove this using the principle of mathematical induction. We
first verify this statement for n “ 1. In this case, we wish to prove that 1 “ 1,
which is certainly true.

Suppose the result is known for n “ k. We wish to prove it for n “ k ` 1. So,
we may assume that

1` ¨ ¨ ¨ ` pn´ 1q “
pn´ 1qppn´ 1q ` 1q

2
“
npn´ 1q

2
.

Then

1` ¨ ¨ ¨ ` pn´ 1q ` n “
npn´ 1q

2
` 1 “

npn` 1q

2
.

This completes the proof of the inductive step. Thus, the principle of mathematical
induction imples that the statement is true for all integers ě 1. �

Proofs involving induction should be written in this format:

(1) Check the statement for the initial integer k0 (which is equal to 1 in the
above example).

(2) Check that if the statement is true for an integer k ě k0, then it is true
for the integer k` 1. (Note that it is very important that this part of the
argument works for k “ k0, and not just k ą k0. Otherwise, we have no
way to deduce the statement for k0 ` 1.)

Part (2) of the argument is referred to as the inductive step. The assumption that
the statement is true for the integer k is referred to as the inductive hypothesis.





LECTURE 9

Further properties of determinants

We begin by recalling some facts we have established so far. Then we will put
them together to obtain the proofs for two of the most important properties of
determinants.

Let n be a positive integer. Then, we know the following facts about n ˆ n
matrices.
Facts:

(a) Let A and B be nˆ n matrices.
(i) If B is obtained from A by performing an operation of the form

Ri ` xRj for some x P R, then detpAq “ detpBq.
(ii) If B is obtained from A by performing an operation of the form xRi

for x P R, then detpBq “ xdetpAq. (Note that generally when we
refer to elementary row operations, we require that x ‰ 0, but this
particular result holds even if we take x “ 0.)

(iii) If B is obtained from A by performing an operation of the form
Ri Ø Rj , then detpBq “ ´detpAq.

(b) detpInq “ 1.
(c) Any matrix can be reduced to a matrix in row reduced echelon form us-

ing the row reduction algorithm (i.e. by a sequence of elementary row
transformations).

(d) A matrix is invertible if and only if it is transformed into the identity
matrix by the row reduction algorithm. If it is not invertible, its row
reduced echelon form has a zero row.

(e) If a matrix B is obtained from a matrix A by performing an elementary
row operation, and if E is the matrix obtained from In after performing
the same row operation, then B “ EA.

Lemma 9.1. Let A be a square matrix and let B be a matrix obtained from A
by performing an elementary row operation. Then detpBq is a non-zero multiple of
detpAq. In other words, there exists a non-zero real number α such that detpBq “
α ¨ detpAq.

Proof. By Fact (a), part (i), if B is obtained from A by the operation Ri`xRj
for some x P R, then detpBq “ detpAq. Thus, in this case we obtain the result with
α “ 1.

If B is obtained from A by the operation xRi for some x P R, x ‰ 0, then by
Fact (a), part (ii), detpBq “ xdetpAq. Thus, in this case, we obtain the result with
α “ x ‰ 0.

Finally, if B is obtained from A by an operation of the form Ri Ø Rj , then
detpBq “ ´detpAq. Thus, we obtain the result with α “ ´1.

Thus, we have verified the result for all the elementary row operations. �

We are now able to put together all these results to deduce an important crite-
rion for invertibility of matrices.

Theorem 9.2. A square matrix is invertible if and only if its determinant is
non-zero.

45
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Proof. Let A be a given nˆ n matrix. By Fact (c), we know that there exist
finitely many elementary row operations, which we denote by Op1, . . . , Opk such
that performing them sucessively on A transforms it into a row reduced echelon
matrix B. We will show that detpAq is non-zero if and only if detpBq is non-zero.

Suppose that B1 is the matrix obtained from A by performing Op1. For each
i satisfying 2 ď i ď k, let Bi be the matrix obtained by performing Opi on the
matrix Bi´1. We will prove by induction that for each i satisfying 1 ď i ď n, there
exists a real number αi ‰ 0 such that detpBiq “ αi detpAq.

For i “ 1, B1 is obtained from A by performing a single elementary row
operation. Thus, Lemma 9.1 shows that there exists some α1 ‰ 0 such that
detpB1q “ α1 detpAq.

Suppose that i ě 1 and it is know that detpBiq “ αi detpAq. Then, Lemma 9.1
implies that there exists a real number βi`1 ‰ 0 such that detpBi`1q “ βi`1 detpBiq.
Thus,

detpBi`1q “ βi`1 detpBiq “ βi`1αi detpAq.

Thus, if we define αi`1 “ βi`1αi, then we obtain the equality

detpBi`1q “ αi`1 detpAq.

This completes the inductive step and proves our claim. (Observe that here induc-
tion has been used to prove something about a finite set of integers rather than the
entire set of integers.)

Thus, in particular, taking i “ k, we see that detpBq “ αk detpAq for some
αk ‰ 0. Thus, it follows that detpBq is non-zero if and only if detpAq is non-zero.

We know that detpAq is invertible if and only if B “ In, in which case detpBq “
1 ‰ 0. If B ‰ In, it has a zero row and hence detpBq “ 0. This completes the
proof. �

Lemma 9.3. Let A be an n ˆ n matrix and let E be a matrix obtained by
performing an elementary row operation on In. Then detpEAq “ detpEq ¨ detpAq.

Proof. This is an immediate consequence of Fact (a). Indeed, the essence of
the argument is already present in the proof of Lemma 9.1. We write the argument
in detail for the sake of completeness. Let B “ EA. Then B is obtained from A by
the same operation that was performed on In to obtain E.

If E is obtained from In by performing the operation Ri ` xRj , then detpEq “
detpInq “ 1. Similarly, performing this operation on A, we get detpBq “ detpAq.
Thus, detpBq “ detpEq ¨ detpAq in this case.

If E is obtained from In by performing the operation xRi for some x ‰ 0,
then detpEq “ xdetpInq “ x. Similarly, performing this operation on A, we get
detpBq “ xdetpAq. Thus, detpBq “ detpEq ¨ detpAq in this case.

If E is obtained from In by performing the operation Ri Ø Rj , then detpEq “
´detpInq “ ´1. Similarly, performing this operation on A, we get detpBq “
´detpAq “ p´1q ¨ detpAq. Thus, detpBq “ detpEq ¨ detpAq in this case.

Thus, we have verified the result for all the elementary row operations. �

Theorem 9.4. Let A and B be nˆn matrices. Then detpABq “ detpAq¨detpBq.

Proof. If A is invertible, then we can write A “ E1 ¨ ¨ ¨Ek where each Ei is ob-
tained from In by performing some elementary row operation. Then, by repeatedly
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using Lemma 9.3, we get

detpABq “ detpE1 ¨ ¨ ¨Ek ¨Bq

“ detpE1q ¨ detpE2 ¨ ¨ ¨Ek ¨Bq

“ detpE1q ¨ detpE2q ¨ detpE3 ¨ ¨ ¨Ek ¨Bq

(and so on)

“ detpE1q ¨ ¨ ¨detpEkqB.

(Exercise: Can you write the above argument rigorously, i.e. avoiding the phrase
“and so on”, by using induction?)

Actually, if we apply the above argument for B “ In, we get

detpAq “ detpE1q ¨ ¨ ¨detpEkq.

Thus, we see that for any matrix B,

detpABq “ detpE1q ¨ ¨ ¨detpEkq ¨ detpBq “ detpAq ¨ detpBq

if A is invertible.
If A is not invertible, let C denote its row reduced echelon form. Then, there

exist matrices E1, . . . Ek such that each Ei is obtained from In by an elementary
row operation and such that A “ E1 ¨ ¨ ¨Ek ¨ C. Then

AB “ E1 ¨ ¨ ¨Ek ¨ pCBq.

As C is a square matrix in row reduced echelon form and it is not equal to the
identity matrix, it must have a zero row. Thus, CB also has a zero row and so
detpCBq “ 0. As the matrix E1 ¨ ¨ ¨Ek is invertible, the first part of the proof shows
that

detpABq “ detpE1 ¨ ¨ ¨Ekq ¨ detpCBq “ 0.

On the other hand, as A is not invertible, we also have detpAq “ 0. Thus, in this
case also, we have detpABq “ detpAq ¨ detpBq. This completes the proof. �
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Cramer’s rule

In this lecture, we will see how determinants can be used to obtain a formula
for the inverse of a square matrix. As a consequence, we will be able to deduce the
well-known Cramer’s rule for solving systems of n-linear equations in n unknowns.
However, first we need to deal with a couple of preliminary topics.
Transposes:

Given an mˆn matrix A, we can form an nˆm matrix called the transpose of
A, denoted by Atr, by just interchanging the rows and columns of A. Another way
of saying this is that we reflect A along the diagonal line that begins at the top left
corner. A precise way of saying this might be to write that if A “ paijqi,j (i.e. if
the pi, jq-entry of A is aij), then Atr “ pajiqi,j (i.e the pi, jq-entry of Atr is ajiq.

Example 10.1. Some examples of transposes:

A “

„

1 2 3
4 5 6



Atr “

»

–

1 4
2 5
3 6

fi

fl

B “
“

1 8 7
‰

Btr “

»

–

1
8
7

fi

fl

C “

»

–

1 2 3
4 5 2
´1 4 1

fi

fl Ctr “

»

–

1 4 ´1
2 5 4
3 2 1

fi

fl

It is important to know how this operation behaves with respect to multiplica-
tion (see part (b) in the following lemma).

Lemma 10.2. Let A PMmˆnpRq and B PMnˆppRq. Then:

(a) pAtrqtr “ A.
(b) AB “ BtrAtr.

Proof. Part (a) follows immediately from the definition. The proof of part
(b) is left as an easy exercise. �

Lemma 10.3. Let E be a matrix obtained from In by an elementary row oper-
ation. Then detpEq “ detpEtrq.

Proof. Suppose E is obtained from In by the operation Ri ` xRj . Then E
has 1’s on the diagonal, x in the pi, jq-position and 0’s elsewhere. Thus, Etr has
1’s on the diagonal, x in the pj, iq-position, and 0’s elsewhere. Thus, Etr can be
obtained from In by the operation Rj ` xRi. In this case, we have detpEq “ 1 and
detpEtrq “ 1, which verifies the result for this particular row operation.

The verification for the other two row operations is left as an easy exercise. �

Proposition 10.4. Let A be a square matrix. Then detpAq “ detpAtrq.

49
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Proof. Suppose that A is an invertible matrix. Then A “ E1 ¨ ¨ ¨Ek where
each Ei has been obtained from In by an elementary row operation. By Lemmma
10.2, Atr “ detpEtrk ¨ ¨ ¨E

tr
1 q. Thus,

detpAtrq “ detpEtrk ¨ ¨ ¨ detpEtr1 q

“ detpEkq ¨ ¨ ¨detpE1q

“ detpAq.

Here, we used Lemma 10.3 to deduce that detpEtri q “ detpEiq for every i.
Suppose A is not invertible. Then its row reduced echelon form B has a zero

row and so detpBq “ 0. As above, we can write A “ E1 . . . EkB where each Ei has
been obtained from In by an elementary row operation. Then Atr “ BtrEtrk ¨ ¨ ¨E

tr
1 .

Thus,

detpAtrq “ detpEtrk ¨ ¨ ¨E
tr
1 qdetpBtrq.

As B has a zero row, Btr has a zero column. Thus, detpBtrq “ 0. (Recall that this
is because every term in the expansion of a determinant has exactly one entry from
each column as a factor.) Thus detpAtrq “ 0. As A is not invertible, we know that
detpAq “ 0. Thus, we have verified the result even when A is not invertible. �

Formula for the inverse of a matrix:
Let A “ paijqi,j be an n ˆ n matrix. As before, let Aij denote the matrix

obtained by deleting the i-th row and j-th column of A. For any two indices i, j,
let

cij “ p´1qi`j detAij .

The matrix C “ pcijqi,j (having the number cij in the pi, jq-position) is called
the cofactor matrix of A. Let us look at an example. The number cij is called the
pi, jq-cofactor of the matrix A.

Example 10.5.

A “

»

–

3 4 ´1
2 1 3
1 ´1 0

fi

fl

Then,

c11 “ p´1q1`1 det

„

1 3
´1 0



“ 3,

c12 “ p´1q1`2 det

„

2 3
1 0



“ 3,

c13 “ p´1q1`3 det

„

2 1
1 ´1



“ ´3,

c21 “ p´1q2`1 det

„

4 ´1
´1 0



“ 1,

c22 “ p´1q2`2 det

„

3 ´1
1 0



“ 1,

c23 “ p´1q2`3 det

„

3 4
1 ´1



“ 7,

c31 “ p´1q3`1 det

„

4 ´1
1 3



“ 13,

c32 “ p´1q3`2 det

„

3 ´1
2 3



“ ´11,

and

c33 “ p´1q3`3 det

„

3 4
2 1



“ ´5.
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Thus, the cofactor matrix is

C “

»

–

3 3 ´3
1 1 7
13 ´11 ´5

fi

fl .

We need one further definition before we can use the above concept to state an
important theorem.

Definition 10.6. Let A “ paijqi,j be an m ˆ n matrix. Then, for any c P R,
cA denotes the matrix pcaijqi,j .

In other words, cA is the matrix obtained by multiplying every entry of A by
the constant c.

We will prove the following theorem in a later lecture:

Theorem 10.7. Let A be an n ˆ n matrix and let C be its cofactor matrix.
Then ACtr “ CtrA “ detpAq ¨ In.

The matrix Ctr is called the adjugate matrix of A.
This immediately gives us the following formula for the inverse of square in-

vertible matrix:

Corollary 10.8. Let A P MnˆnpRq be an invertible matrix and let C be its
cofactor matrix. Then A´1 “ detpAq´1 ¨ Ctr.

Proof. Suppose D “ detpAq´1 ¨ C. Then,

DA “ detpAq´1 ¨ pCAq “ detpAq´1 ¨ detpAq ¨ In “ In.

This shows that D “ A´1. �

Example 10.9. We apply this formula for a general 2ˆ 2 matrix. Suppose

A “

„

a b
c d



.

Then, the matrix of cofactors is

C “

„

d ´c
´b a



Thus, the inverse of A is given by the following formula:

A´1 “

«

d
ad´bc

´b
ad´bc

´c
ad´bc

a
ad´bc

ff

Cramer’s rule:
As we have seen before, a system of n linear equations in n variables can be

written in the form AX “ B where A is an nˆ n square matrix with entries from
R, X is an nˆ 1 matrix with variable entries and B is an nˆ 1 matrix with entries
from R. Then, if A is invertible, the solution of the system is given by X “ A´1B.
This allows us to deduce the following formula for the solutions of such a system.
We will only look at the formula for now and postpone the proof to a later lecture.

Theorem 10.10 (Cramer’s rule). Consider the following system of linear equa-
tions

a11X1 ` a12X2 ` ¨ ¨ ¨ ` a1nXn “ b1
a21X1 ` a22X2 ` ¨ ¨ ¨ ` a2nXn “ b2

...
...

...
...

an1X1 ` an2X2 ` ¨ ¨ ¨ annXn “ bn

where all aij and all bi are constants and X1, . . . , Xn are variables. Let A “ paijqi,j
and for every i satisfying 1 ď i ď n, let Ai denote the square matrix obtained from A
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by substituting the column matrix rb1, . . . , bns
tr in place of the i-th column of A. If A

is invertible, the above system has a unique solution given by Xi “ detpAiq{detpAq
for every i.

Example 10.11. Consider the following system:

X1 ` 3X2 “ 1

2X1 ´X2 “ 5

We compute the determinant of the matrix of coefficients

det

„

1 3
2 ´1



“ ´7

and find that it is not equal to zero. Thus, this matrix is invertible and so Cramer’s
rule may be applied. Then the solution is given by

X1 “

ˆ

1

´7

˙

¨ det

„

1 3
5 ´1



“ 16{7,

X1 “

ˆ

1

´7

˙

¨ det

„

1 1
2 5



“ ´3{7.



LECTURE 11

Proof of Cramer’s rule

We defined the determinant of a matrix using the formula for expansion by
the first row. We will now show that it is possible to compute the determinant by
expanding by any row or column. Indeed, suppose that in a 3 ˆ 3 determinant, I
want to expand the determinant by the third row. Then, we can use row operations
to shift the third row to the top and then use our formula for expansion by the first
row. Let us try this out.

Suppose we have the following matrix:

A “

»

–

a11 a12 a13
a21 a22 a23
a31 a32 a33

fi

fl

We want to expand by the third row, and so we bring the third row to the top to
get a new matrix. We do this by the operation R1 Ø R3.

B “

»

–

a31 a32 a33
a21 a22 a23
a11 a12 a13

fi

fl

Then, we know that detpBq “ ´ detpAq. Thus, it will suffice to compute detpBq.
We use our formula for expansion by the first row.

detpBq “ a31 det

„

a22 a23
a12 a13



´ a32 det

„

a21 a23
a11 a13



` a33 det

„

a21 a22
a11 a12



This formula is a little inconvenient because the 2ˆ 2 matrix obtained by deleting
the row and column containing a31 in C is a bit different from the 2 ˆ 2 matrix
obtained by deleting it in A. To fix this problem, we would need to work with the
following matrix:

C “

»

–

a31 a32 a33
a11 a12 a13
a21 a22 a23

fi

fl

This matrix can be obtained from A by performing the operations R3 Ø R2 followed
by R2 Ø R1. Thus, detpCq “ detpAq. We use our formula on this matrix.

detpCq “ a31 det

„

a12 a13
a22 a23



´ a32 det

„

a11 a13
a21 a23



` a33 det

„

a11 a12
a21 a22



If we use our usual notation from Definition 8.1, we see that

detpAq “ detpCq “ a31 detpA31q ´ a32 detpA32q ` a33 detpA33q.

On the other hand, if we had wanted to expand by the second row, we would
have used the matrix

D “

»

–

a21 a22 a23
a11 a12 a13
a31 a32 a33

fi

fl

Then we know that detpAq “ ´detpDq and expanding detpDq by the first row, we
get

detpAq “ ´detpDq “ ´a21 detpA21q ` a22 detpA22q ´ a23 detpA23q.
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It should now be clear how this argument may be generalized for nˆn matrices.
Suppose we have an n ˆ n matrix A “ paijqi,j . Suppose we want to compute its
determinant by expanding by the k-th row. So we perform the operations Rk Ø
Rk´1, Rk´1 Ø Rk´2, . . . R2 Ø R1. Thus, detpBq “ p´1qk´1 detpAq. It is easy to
see that for any l, 1 ď l ď n, pn´ 1q ˆ pn´ 1q matrix obtained by deleting the first
row and l-th column in B is the same as the pn´ 1q ˆ pn´ 1q matrix obtained by
deleting the k-th row and l-column in A. Thus,

detpBq “ ak1 detpAk1q ´ ak2 detpAk2q ` ¨ ¨ ¨ ` p´1qn´1akn detpAknq.

Hence,

detpAq “ p´1qk´1ak1 detpAk1q´p´1qk´1ak2 detpAk2q`¨ ¨ ¨`p´1qk`n´2akn detpAknq.

This can be rewritten (for aesthetic reasons) as

detpAq “ p´1qk`1ak1 detpAk1q` p´1qk`2ak2 detpAk2q` ¨ ¨ ¨` p´1qk`nakn detpAknq.

(Note that these formulas are the same since, for instance, p´1qk´1 “ p´1qk`1,
etc.) Thus, we have proved the following:

Theorem 11.1 (Expansion by rows). Let A “ paijqi,j be an nˆ n matrix. For
any pair of integers i, j satisfying 1 ď i, j ď n, let Aij be the matrix obtained by
deleting the i-th row and j-column of A. Then for any k satisfying 1 ď k ď n, we
have

detpAq “
n
ÿ

l“1

p´1qk`lakl detpAklq.

Taking the transpose of a matrix turns its rows into columns. As the determi-
nant of a matrix is equal to that of its transpose, we obtain the following result for
expansion by columns:

Theorem 11.2 (Expansion by columns). Let A “ paijqi,j be an nˆ n matrix.
For any pair of integers i, j satisfying 1 ď i, j ď n, let Aij be the matrix obtained
by deleting the i-th row and j-column of A. Then for any k satisfying 1 ď k ď n,
we have

detpAq “
n
ÿ

l“1

p´1qk`lalk detpAlkq.

Using this we can now prove Theorem 10.7 which states that if A is an n ˆ n
matrix and C is its cofactor matrix, then ACtr “ CtrA “ detpAq ¨ In.

Proof of Theorem 10.7. We recall some of the notation we had set up be-
fore stating Theorem 10.7. We have been given the nˆ n matrix A “ paijqi,j . For
any ordered pair pi, jq with 1 ď i, j ď n, we define Aij to be the pn ´ 1q ˆ pn ´ 1q
matrix obtained by deleting the i-th row and j-th column of A. Then, for any such
ordered pair pi, jq, we define cij “ p´1qi`j detpAijq. Then, C is the matrix defined
which has cij in the pi, jq-position. Thus, Ctr has cji in the pi, jq-position.

Let D “ pdijqi,j be the product ACtr. Then, by the definition of matrix
multiplication,

dij “
n
ÿ

k“1

aik ¨
`

pk, jq ´ entry of Ctr
˘

“

n
ÿ

k“1

aikcjk

“

n
ÿ

k“1

p´1qj`kaik detpAjkq.
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If i “ j, we see by Theorem 11.1 that this dii “ detpAq. Thus, all the diagonal
entries of D are equal to detpAq.

Now, let us fix some ordered pair pi, jq satisfying 1 ď i, j ď n and i ‰ j. Let
A1 be the matrix obtained by replacing the j-th row of A by a copy of the i-th row.
Then, it is easy to see for any k, the pj, kq-cofactor of A1 is just

p´1qi`j detpAjkq “ cjk.

Thus, we by using the formula for the expansion of the determinant by the j-th row
that

detpA1q “
n
ÿ

k“1

p´1qj`kaik detpAjkq

But the i-th and j-th rows of A1 are identical. Thus, detpA1q “ 0. Thus, for i ‰ j,
dij “ 0. This completes the proof the theorem. �

Recall that this gives us a formula (see Corollary 10.8) for the inverse matrix
(if it exists). We can now use this to prove Theorem 10.10.

Proof of Theorem 10.10. Let X denote the column matrix rX1, . . . , Xns
tr

and let B be the column matrix rb1, . . . , bns
tr. Then the system may be written as

AX “ B. If A is invertible, we multiply both sides of this equation by A´1 to get
X “ A´1B. Using the formula for the inverse from Corollary 10.8, we see that

Xi “

n
ÿ

j“1

cij
detpAq

bj

“
1

detpAq

n
ÿ

j“1

p´1qi`jAjibj .

Expanding detpAiq by the i-th column, we see that

detpAiq “
n
ÿ

j“1

p´1qi`jbjAji.

This completes the proof of the theorem. �





LECTURE 12

Permutation matrices

We will now write down a formula for the complete expansion of a determinant.
To illustrate the method, we will demonstrate for 2ˆ 2 matrices.

Suppose

A “

„

a11 a12
a21 a22



be a given matrix. First, we write the first column of A as a sum as follows:
„

a11
a21



“

„

a11
0



`

„

0
a21



Then, using Lemma 8.5, we see that

detpAq “ det

„

a11 a12
0 a22



` det

„

0 a12
a21 a22



Now, we split the second column of the matrix in a similar manner.
„

a12
a22



“

„

a12
0



`

„

0
a22



Thus, applying Lemma 8.5 again, we get

detpAq “ det

„

a11 a12
0 0



` det

„

a11 0
0 a22



` det

„

0 a12
a21 0



` det

„

0 0
a21 a22



Recall that if any row or column of a matrix is multiplied by a constant c, its
determinant also gets multiplied by c. Thus, we obtain the following expression:

detpAq “a11a12 det

„

1 1
0 0



` a11a22 det

„

1 0
0 1



` a12a21 det

„

0 1
1 0



` a21a22 det

„

0 0
1 1



The first and the fourth determinants on the right hand side are clearly equal to
zero because the matrices have two identical columns each. Thus, we are left with

detpAq “ a11a22 det

„

1 0
0 1



` a12a21 det

„

0 1
1 0



Computing these two determinants gives us the familiar formula for the determinant
of a 2ˆ 2 matrix.

We now use this method on an n ˆ n matrix. Any column matrix can be
written as a sum of n column matrices, each of which has at most one non-zero
term. Indeed, we can write

»

—

—

—

—

–

a1
a2
...
an

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

a1
0
...
0

fi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

–

0
a2
...
0

fi

ffi

ffi

ffi

ffi

fl

` ¨ ¨ ¨ `

»

—

—

—

—

–

0
...
0
an

fi

ffi

ffi

ffi

ffi

fl
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Given any nˆ n matrix A “ paijqi,j we apply this method to each of the columns
of A successively, to write

detpAq “
ÿ

1ďi1,...,inďn

detpAi1...inq

where Ai1...in is the matrix in which the pij , jq-entry is equal to aijj for every j,
and all other entries are 0. Thus, every column has at most one non-zero entry. As
above, we may pull out these entries as common factors from each column to write

detpAq “
ÿ

1ďi1,...,inďn

ai11ai22 ¨ ¨ ¨ ainn detpPi1...inq

where Pi1...in is the matrix in which the pij , jq-entry is equal to 1 for every j, and
all other entries are 0. If for some matrix Pi1...in , we have ik “ il for some k ‰ l,
the k-th and l-th columns of this matrix are identical and hence its determinant
is equal to 0. Thus, in the summation on the right, we only need to retain those
terms in which all the i1, . . . , in are distinct. To describe such choices of i1, . . . , in,
we will use permutations.

Definition 12.1. Let T be any set. A permutation of T is a function f : T Ñ T
which is one-one and onto (i.e. it is bijective).

Notation 12.2. The set of all permutations of the set t1, . . . , nu will be denoted
by Sn.

Thus, if σ P Sn, all the elements of the set t1, . . . , nu occur exactly once in
the sequence σp1q, . . . , σpnq, in some order. Conversely, if we take any sequence
i1, . . . , in in which all the elements of the set t1, . . . , nu occur exactly once in some
order, the function σ : t1, . . . , nu Ñ t1, . . . , nu, defined by σpjq “ ij for all 1 ď j ď n
is a permutation.

Definition 12.3. For any σ P Sn, we define the permutation matrix associated
by σ to be the matrix which has 1’s in the pσpiq, iq position for every i, 1 ď i ď n,
and 0’s elsewhere.

Thus, we have obtained the formula

detpAq “
ÿ

σPSn

aσp1q1aσp2q2 . . . aσpnqn detpPσq.

For any permutation σ, the permutation matrix Pσ can be obtained from the
identity matrix by successively switching rows. Thus, detpPσq “ ˘1 for any per-
mutation σ.

Definition 12.4. The sign of a permutation σ P Sn is defined to be detpPσq
where Pσ is the permutation matrix corresponding to σ and is denoted by signpσq.

Thus, we have proved the following:

Theorem 12.5. Let paijqi,j be an nˆ n matrix. Then

detpAq “
ÿ

σPSn

signpσq ¨ aσp1q1aσp2q2 . . . aσpnqn.

While this formula is conceptually elegant, it is not necessarily the most efficient
tool for actually computing the determinant of a matrix, particularly for large n.
However, it is good to know that the signs of all the terms in the expansion do have
a simple description.



LECTURE 13

Vector spaces: Introduction and motivation

We begin this lecture by re-examining some of the objects we have already
studied, in order to motivate the abstract notion of a vector space. We have already
been studying some concrete examples of vector spaces, namely the sets Rn. We
begin by observing the algebraic structure that exists on these sets.

The sets Rn are equipped with the following operations:

(a) Addition: This is a function from the product Rn ˆ Rn to the set Rn. In
other words, it takes a pair of elements x and y of Rn and produces a
third element of the set Rn, which we denote as x` y. If

x “

»

—

—

—

—

–

x1
x2
...
xn

fi

ffi

ffi

ffi

ffi

fl

and y “

»

—

—

—

—

–

y1
y2
...
yn

fi

ffi

ffi

ffi

ffi

fl

then we define as follows:

x` y “

»

—

—

—

—

–

x1 ` y1
x2 ` y2

...
xn ` yn

fi

ffi

ffi

ffi

ffi

fl

(b) Scalar multiplication: This is a function from R ˆ Rn to Rn. In other
words, it takes an element c P R, an element x P Rn and produces an
element of Rn, which we denote as cx. If

x “

»

—

—

—

—

–

x1
x2
...
xn

fi

ffi

ffi

ffi

ffi

fl

, then we define cx “

»

—

—

—

—

–

cx1
cx2

...
cxn

fi

ffi

ffi

ffi

ffi

fl

.

These operations satisfy certain standard properties, which we will not list in
detail for now.

Let A be an mˆn matrix with entries from R. We define a function TA : Rn Ñ
Rm by TApxq “ Ax. It is easy to verify that this function satisfies the following:

(i) TApx` yq “ TApxq ` TApyq for x,y P Rn.
(ii) TApcxq “ cTApxq for c P R and x P Rn.

These two properties could also be expressed more concisely by saying that TApax`
byq “ aTApxq ` bTApyq for all a, b P R and x,y P Rn.

We note that the matrix A and the linear transformation TA fully characterize
each other. Indeed, we will now show that if the linear transformation TA is given
to us, the matrix A can be recovered from it.

Definition 13.1. Let n be a positive integer. For 1 ď i ď n let ei be the
n ˆ 1 matrix having 1 in the pi, 1q-position and 0’s elsewhere. The ordered tuple
pe1, e2, . . . , enq is called the standard basis of Rn.
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60 13. VECTOR SPACES: INTRODUCTION AND MOTIVATION

We will discuss the notion of a “basis” in greater detail later and at that point
this terminology will make much more sense. For now, we note that this basis is
useful for recovering the matrix A from the linear transformation TA. Indeed, a
simple calculation shows that for each i satisfying 1 ď i ď n, the column matrix
TApeiq is just the i-th column of the matrix A. (Check this by explicit matrix
multiplication.) Thus, if we are given the linear transformation TA, we may recover
A by simply computing the column matrices T peiq for all i and then putting them
together into an nˆ n matrix.

We now observe a useful property of the standard basis of Rn. Given any
x “ rx1, . . . , xns

tr P Rn, we write

x “

»

—

—

—

—

–

x1
x2
...
xn

fi

ffi

ffi

ffi

ffi

fl

“ x1

»

—

—

—

—

–

1
0
...
0

fi

ffi

ffi

ffi

ffi

fl

` x2

»

—

—

–

0
1
...0

fi

ffi

ffi

fl

` ¨ ¨ ¨ ` xn

»

—

—

—

—

–

0
...
0
1

fi

ffi

ffi

ffi

ffi

fl

.

Thus, every vector can be written as a sum of multiples of the ei. It is clear that
this can be done in a unique manner. In other words, if y1, . . . , yn are real numbers
such that x “ y1e1 ` y2e2 ` ¨ ¨ ¨ ` ynen, then we must have xi “ yi for all i.

Definition 13.2. A function T : Rn Ñ Rm is said to be a linear transformation
(or a linear map) if

T pax` byq “ aT pxq ` bT pyq

for all a, b P R and x,y P Rn.

Exercise 13.3. Let T : Rn Ñ Rm be a linear function. Let k be a positive
integer. Let c1, . . . , ck P R and let x1, . . . ,xk P Rn. Show that

T pc1x1 ` ¨ ¨ ¨ ` ckxkq “ c1T px1q ` ¨ ¨ ¨ ` ckT pxkq.

(Hint: You may use induction on k.)

We saw above that any mˆn matrix gives rise to a linear transformation from
Rn to Rm. We will now see that the converse is also true.

Theorem 13.4. Let T : Rn Ñ Rm be a linear transformation. Let A be the
mˆn matrix which has T peiq as its i-th column. Then T pxq “ TApxq for all x P Rn.

Proof. Suppose x “ rx1, . . . , xns
tr where xi P R for all i. Then, as above, we

see that x “
řn
i“1 xiei. By Exercise 13.3, we have

T pxq “ T p
n
ÿ

i“1

xieiq “
n
ÿ

i“1

xiT peiq.

By definition T peiq is the i-th column of A and is hence equal to Aei. Thus, as TA
is known to be a linear transformation, we get

T pxq “
n
ÿ

i“1

xiTApeiq “ TAp
n
ÿ

i“1

xieiq “ TApxq.

�

Given any linear transformation T , the above theorem shows that we can con-
struct a matrix A such that T “ TA. We observe that there can be only one
matrix with this property. Indeed, if T “ TB for some other matrix B, then
TApeiq “ TBpeiq for every i. Hence the i-th columns of A and B are equal for every
i. Thus, A and B are the same matrix. Thus we have established a 1-1 correspon-
dence between the set of m ˆ n matrices and linear transformations from Rn to
Rm.
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Now we will begin to construct some abstract objects on the basis of these
concrete examples.
Fields:

In most of our discussion, we have restricted our scalars to the set of real
numbers. However, we have only used a few basic properties of the set of real
numbers, which are also satisfied by the set of rational numbers. Thus, our entire
discussion would remain valid if we were to replace R by Q. More generally, we
would be able to do this with any field, which is defined as follows:

Definition 13.5. A field is a set F which comes equipped with two functions,
called addition and multiplication, from F ˆ F to F . The addition function will
be written as px, yq ÞÑ x ` y and the multiplication function will be written as
px, yq ÞÑ x ¨ y. (Sometimes, we may also write xˆ y or xy in place of x ¨ y.) These
functions are required to satisfy the following properties:

(1) Properties of addition:
(a) Associativity : px` yq ` z “ x` py ` zq for all x, y, z P F .
(b) Commutativity : x` y “ y ` x for all x, y P F .
(c) Additive identity : There exists a unique element 0 such that x` 0 “

0` x “ x for all x P F .
(d) Additive inverse: For every x P F , there exists a unique element ´x

satisfying x` p´xq “ p´xq ` x “ 0.
(2) Properties of multiplication:

(a) Associativity : pxyqz “ xpyzq for all x, y, z P F .
(b) Commutativity : xy “ yx for all x, y P F .
(c) Multiplicative identity : There exists a unique element 1 such that

x ¨ 1 “ 1 ¨ x “ x for all x P F .
(d) Multiplicative inverse: For every x P F such that x ‰ 0, there exists

a unique element x´1 satisfying x ¨x´1 “ x´1 ¨x “ 1. (It is customary
to write x{y instead of x ¨ y´1 for x, y P F with y ‰ 0.)

(3) Distrbutive property : xpy ` zq “ xy ` xz for x, y, z P F .

Examples 13.6.

(1) As mentioned before the set of real numbers and the set of rational num-
bers, equipped with the usual operations of addition and multiplication,
form fields which are denoted by R and Q respectively.

(2) We start with the set R2. We define the addition on this set by

px, yq ` pz, wq “ px` z, y ` wq

and multiplication by

px, yq ¨ pz, wq “ pxz ´ yw, xw ` yzq.

It can be easily verified that this set is a field with the additive identity
being p0, 0q and the multiplicative identity being p1, 0q. The set R2, with
these operations, is called the field of complex numbers, and is denoted by
C.

For any element x P R and any element α “ py, zq P R2, we write x ¨α
for pxy, xzq. Thus, any element px, yq P C can be written as

px, yq “ x ¨ p1, 0q ` y ¨ p0, 1q.

We denote the element p0, 1q by i. Since p1, 0q is the multiplicative identity
in C, we abuse notation to write x ¨ p1, 0q ` y ¨ p0, 1q as x ` yi. Observe
that

p0, 1q ¨ p0, 1q “ p´1, 0q “ ´1 ¨ p1, 0q.

Thus, if we identify every real number x P R with the element x ¨ p1, 0q “
px, 0q of C, we see that i is a square-root of ´1 in C.
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(3) Let p be any prime number. We consider the set Fp :“ t0, 1, . . . , p ´ 1u.
For any two elements a, b P Fp, we define the sum a‘b to be the remainder
left when we divide the integer a`b by p. Similarly, we define the product
ad b to be the remainder left when we divide the integer ab by p. It can
be verified that, with these operations, Fp forms a field.

In everything that we have done so far in this course, we can replace R by any
field. So from now on, we will work with a general field F .

Vector spaces:

Definition 13.7. Let F be a field. A vector space over F (or an F -vector
space) is a set V , equipped with a function called addition from V ˆ V Ñ V and
a function called scalar multiplication from F ˆ V Ñ V . The addition function
will be written as px,yq ÞÑ x` y and the multiplication function will be written as
pc,xq ÞÑ c ¨ x. (Sometimes, we may also write cx in place of c ¨ x.) These functions
are required to satisfy the following properties:

(1) Properties of addition:
(a) Associativity : x` py ` zq “ px` yq ` z for all x,y, z P V .
(b) Commutativity : x` y “ y ` x for all x,y P V .
(c) Additive identity : There exists an element 0 P Rn such that x` 0 “

0` x “ x for all x P V .
(d) Additive inverse: For every x P V , there exists an element, which we

denote by ´x, and which satsifies x` p´xq “ p´xq ` x “ 0.
(2) Properties of scalar multiplication:

(a) Associativity : cpdxq “ pcdqx for all c, d P F and x P V .
(b) Unital property: 1x “ x for all x P V .

(3) Distributive properties:
(a) pc` dqx “ cx` dx for c, d P F and x P V .
(b) cpx` yq “ cx` cy for c P F and x,y P V .

Given any vector space V , its elements will often be referred to as vectors.

Examples 13.8. Let F be a field. In the following examples, when we say
vector space, we always mean an F -vector space.

(1) Consider the set t0u on which addition is defined by 0` 0 “ 0 and scalar
multiplication is defined by x ¨ 0 “ 0 for any x P F . This clearly forms a
vector space, which is called the zero vector space.

(2) For any integer n, the set Fn of nˆ 1 matrices with entries from F is an
F -vector space.

(3) For any fixed positive integers m and n, the set MmˆnpF q of mˆn matrices
with entries from F is a vector space. Addition is defined as in Lecture 6.
Given any matrix m ˆ n matrix A “ paijqi,j and c P F , we define cA to
be the mˆ n matrix having the entry caij in the pi, jq position. It is easy
to check that this is an F -vector space.

(4) Let S be any set. Consider the set FuncpS, F q of all functions from S to
F . For f, g P FuncpS, F q, we define the sum f ` g to be a function from
S Ñ F defined by pf ` gqpsq “ fpsq ` gpsq for all s P S. For c P F and
f P FuncpS, F q we define cf P FuncpS, F q by pcfqpsq “ cpfpsqq for all
s P S. It is easy to verify that this is an F -vector space.



LECTURE 14

Basic properties of vector spaces; subspaces

In Lecture 13, we defined linear transformations from Rn to Rm. It is easy to
see that this definition can now be generalized to vector spaces.

Let F denote an arbitrary field.

Definition 14.1. Let V and W be F -vector spaces. A linear transformation
(or linear map) from V to W is a function T : V ÑW such that

T pax` byq “ aT pxq ` bT pyq

for all a, b P F and x,y P V .

The following lemma is easy to prove and the proof is left as an exercise:

Lemma 14.2. Let V and W be F -vector spaces. Let T : V ÑW be a function.
Then, T is a linear transformation if and only if both of the following conditions
hold:

(a) T px` yq “ T pxq ` T pyq for all x,y P V .
(b) T pcxq “ cT pxq for all c P F and x P V .

Definition 14.3. Let V and W be F -vector spaces. An isomorphism from V
to W is a linear transformation T : V Ñ W which is a bijection. If there exists an
isomorphism from V to W , we say that V and W are isomorphic.

Remark 14.4. It is easy to check that if T : V Ñ W is an isomorphism, then
the inverse function T´1 : W Ñ V (which is well-defined because T is a bijection)
is also linear. Thus, T´1 is also an isomorphism of vector spaces.

If two spaces are isomorphic, they have the same mathematical properties,
though they may be distinct objects. Note that there may be more than one iso-
morphism between two vector spaces.

Example 14.5. Let V be a vector space and let IdV : V Ñ V be the identity
map defined by IdV pxq “ x. It is easy to see that IdV is an isomorphism of vector
spaces.

Example 14.6. Let V “ F 2. Let T : V Ñ V be defined by

T

˜

„

x1
x2



¸

“

„

x1
´x2



It is easy to see that this is an isomorphism. If F “ R, we may think of R2 as
the Euclidean plane and you should be able to recognize this transformation as the
reflection in the x-axis.

Example 14.7. Let m and n be positive integers. Let T : MmˆnpF q Ñ
MnˆmpF q be defined by T pAq “ Atr. It is easy to see that T is a bijection. You
may check that T is also a linear transformation. (This is very easy.) Thus T is an
isomorphism of vector spaces.

Example 14.8. Let n be an integer and let S “ t1, 2, . . . , nu. Let V “

FuncpS, F q and let W “ Fn. We will construct an isomorphism from V to W .
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We first define a function φ : V ÑW . Given any f P V “ FuncpS, F q, we want
to construct an element of W “ Fn. f is a function from S to F . Thus, for every
i P S “ t1, 2, . . . , nu, fpiq is an element of F . We define

φpfq “

»

—

—

—

—

–

fp1q
fp2q

...
fpnq

fi

ffi

ffi

ffi

ffi

fl

.

Let us check that φ is linear. Let f, g P V and let a, b P F . We want to
show that φpaf ` bgq “ aφpfq ` bφpgq. By definition, for every i P S, we have
paf ` bgqpiq “ pafqpiq ` pbgqpiq “ afpiq ` bgpiq. Thus,

φpaf ` bgq “

»

—

—

—

—

–

afp1q ` bgp1q
afp2q ` bgp2q

...
afpnq ` bgpnq

fi

ffi

ffi

ffi

ffi

fl

“ a

»

—

—

—

—

–

fp1q
fp2q

...
fpnq

fi

ffi

ffi

ffi

ffi

fl

` b

»

—

—

—

—

–

gp1q
gp2q

...
gpnq

fi

ffi

ffi

ffi

ffi

fl

“ aφpfq ` bφpgq.

Thus, φ is linear.
If φpfq “ φpgq then the column matrices

»

—

—

—

—

–

fp1q
fp2q

...
fpnq

fi

ffi

ffi

ffi

ffi

fl

and

»

—

—

—

—

–

gp1q
gp2q

...
gpnq

fi

ffi

ffi

ffi

ffi

fl

are equal. Hence their corresponding entries must be equal. Thus fpiq “ gpiq for
all i, 1 ď i ď n. Thus f “ g. This shows that φ is a 1´ 1 function.

Given any x “ rx1, . . . , xns
tr PW , we can define f : S Ñ F by fpiq “ xi. Then

it is clear that φpfq “ x. As x was arbitrary, this shows that φ is onto. Thus we
have now shown that φ is a bijection. Thus, φ is an isomorphism.

Another way to check that φ is 1´1 and onto is to directly construct the inverse
function of φ. If x “ rx1, . . . , xns

tr, we define ψpxq to be a function S Ñ F defined
by ψpxqpiq “ xi. Then one needs to check that ψpφpfqq “ f for all f P V and
φpψpxqq “ x for every x PW . (You may check this as an easy exercise.)

We will now prove some simple results about vector spaces.
The following result shows that the additive identity in a vector space is unique:

Proposition 14.9. Let V be a vector space. Let w P V be such that v`w “ v
for all v P V . Then w “ 0.

Proof. We take v “ 0. Then the assumption on w tells us that 0 `w “ 0.
However, by the definition of 0, we also know that 0`w “ w. Thus we see that

0 “ 0`w “ w.

This proves the result. �

The next result shows that the additive inverse of any element is unique:

Proposition 14.10. Let V be a vector space and let v P V . If w is such that
v `w “ 0, then w “ ´v.
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Proof. We observe that

w “ 0`w

“ p´v ` vq `w

“ p´vq ` pv `wq

“ p´vq ` 0

“ ´v.

This completes the proof. �

Proposition 14.11. Let V be a vector space and let v P V . Then 0v “ 0.

Proof. We observe that

0v “ p0` 0qv

“ 0v ` 0v.

Adding ´0v on both sides, we get 0 “ 0v. �

Proposition 14.12. Let V be a vector space and let v inV . Then, we have
p´1q ¨ v “ ´v.

Proof. From the definition of vector spaces, we know that 1 ¨ v “ v. Thus,
we observe that

v ` p´1q ¨ v “ 1 ¨ v ` p´1q ¨ v

“ p1` p´1qq ¨ v

“ 0 ¨ v

“ 0.

By Proposition 14.10, we see that p´1q ¨ v “ ´v. �

Subspaces:
Let V be a vector space. A subset U of V is said to be a subspace of V if the

addition and scalar multiplication on V , when evaluated on elements of U , turns
U into a vector space. Thus, for this to happen, for any x1,x2 P U , we must have
x1 ` x2 P U . Also, for any c P F and any x P U , we must have cx P U . A priori, it
may seem that, once this is verified, one must also check that the various properties
of addition and scalar multiplication also hold for U . But this is not necessary since
they are already known to hold in V ! Thus, we may actually define subspaces as
follows:

Definition 14.13. Let V be a vector space. A subset U Ă V is said to be a
subspace of V if the following two conditions hold:

(1) For any x1,x2 P U , we have x1 ` x2 P U .
(2) For any c P F and any x P U , we have cx P U .

The following lemma gives shows that these two conditions may be expressed
in a more concise manner. The proof is left as an exercise.

Lemma 14.14. Let V be a vector space. A subset U Ă V is a subspace of V if
and only if for any x1,x2 P U and any a, b P F , we have ax1 ` bx2 P U .

Example 14.15. Let V “ F 2. Let

U “
 

rx1, x2s
tr : x1 P F, x2 “ 0

(

.

It is easy to check that U is a subspace.





LECTURE 15

Subspaces, spans of subsets, linear independence

More examples of subspaces:

Definition 15.1. Let V and W be vector spaces and let T : V Ñ W be a
linear transformation.

(a) The kernel of T , denoted by kerpT q is defined by

kerpT q “ tv P V : T pvq “ 0u.

(b) The image of T , denoted by impT q is defined by

impT q “ tT pvq : v P V u.

Lemma 15.2. Let V and W be vector spaces and let T : V Ñ W be a linear
transformation. Then kerpT q is a subspace of V and impT q is a subspace of W .

Proof. Suppose v1,v2 P kerpT q and a1, a2 P F . Then

T pa1v1 ` a2v2q “ a1T pv1q ` a2T pv2q “ 0.

Thus kerpT q is a subspace of V .
Suppose w1,w2 P impT q and a1, a2 P F . By assumption, there exist v1,v2 P V

such that T pv1q “ w1q and T pv2q “ w2q. Thus,

T pa1v1 ` a2v2q “ a1T pv1q ` a2T pv2q “ a1w1 ` a2w2.

Thus, a1w1 ` a2w2 P impT q. Thus, impT q is a subspace of W . �

Studying the kernel and image of a linear transformation can be very useful for
understanding its properties, as the following lemma shows:

Lemma 15.3. Let V and W be vector spaces and let T : V Ñ W be a linear
transformation.

(a) T is 1´ 1 (injective) if and only if kerpT q is the zero subspace of V .
(b) T is onto (surjective) if and only if impT q “W .

Proof. Part (b) is obvious from the definition, and so we focus on proving (a).
Suppose T is 1´1. Then if T pvq “ T p0q “ 0, we must have v “ 0, which shows

that kerpT q is the zero subspace.
Conversely, suppose that kerpT q is the zero subspace. If T is not 1 ´ 1, there

exist v1,v2 such that v1 ‰ v2, but T pv1q “ T pv2q. Thus,

T pv1 ´ v2q “ T pv1q ´ T pv2q “ 0.

However, v1 ´ v2 ‰ 0. Thus, kerpT q is not the zero subspace of V . �

Proposition 15.4. Let V be a vector space and let tWiuiPI be a collection of
subspaces of V . Then, the intersection W “

Ş

iPIWi is a subspace of V .

Proof. Let w1,w2 P W and let a1, a2 P F . For any i P I, w1,w2 P Wi. Thus
a1w1 ` a2w2 P Wi for every i P I. Thus a1w1 ` a2w2 P W . This shows that W is
a subspace of V . �
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Span of a set:

Definition 15.5. Let V be a vector space and let S be a subset of V . The span
of S, denoted by spanpSq is the intersection of all subspaces of V which contain S.

It follows from Proposition 15.4 that the span of a subset S is actually a subspace
of V . Since it is contained inside every other subspace which contains S, we see
that it is the smallest subspace of V which contains S. We will now obtain a more
concrete description of this subspace.

Definition 15.6. Let V be a vector space and let S be a subset of V . An
element v P V is said to be a linear combination of elements of S if there exist
finitely many elements v1, . . . ,vn of S and elements a1, . . . , an P F such that

v “ a1v1 ` ¨ ¨ ¨ anvn.

Proposition 15.7. Let V be a vector space and let S be a subset of V . Then
spanpSq is equal to the set of all the linear combinations of elements of S.

Proof. Let W be some subspace of V containing S. Then for any elements
v1,v2 P S and elements a1, a2 P F , the element a1v1 ` a2v2 lies in W . A simply
induction argument allows us to deduce from this that if v1, . . . ,vn are elements of
S and a1, . . . , an P F , then the element

řn
i“1 aivi is in W . (Exercise: Use induction

on n to prove this.) Thus, we see that the set of linear combinations of S is contained
in spanpSq.

We now claim that the set of all linear combinations of elements of S is actually
a subspace of V . Since this set contains S itself, and since spanpSq is contained in
any subspace of V containing S, this will imply that spanpSq is contained in the
set of linear combinations of S. Thus, it will follow that spanpSq is actually equal
to the set of linear combinations of S.

Thus, it now remains to show that the set of linear combinations of S is a
subspace. Suppose v and w are linear combinations of elements of S. Thus, there
exist elements v1, . . . ,vm,w1, . . . ,wn in S and a1, . . . , am, b1, . . . , bn P F such that
v “

řm
i“1 aivi and w “

ř

i “ 1nbiwi. Then, for any a, b P F , the element

av ` bw “

m
ÿ

i“1

paaiqvi `
n
ÿ

i“1

pbbiqwi

is clearly a linear combination of elements of S. This completes the proof. �

Example 15.8. Let V “ F 3. Let

v1 “

»

–

1
1
0

fi

fl , v2 “

»

–

0
1
1

fi

fl , v3 “

»

–

´1
0
1

fi

fl .

First we compute spanpv1,v2q. Suppose w is in spanpv1,v2q. Thus, there exist
a, b P F such that

w “ av1 ` bv2 “

»

–

a
a` b
b

fi

fl .

Now we compute spanpv1,v2,v3q. We see that w lies in spanpv1,v2,v3q if and
only if there exist a, b, c P F such that

w “ av1 ` bv2 ` cv3 “

»

–

a´ c
a` b
b` c

fi

fl .

A careful examination of these expressions shows that spanpv1,v2q is the same
as spanpv1,v2,v3q. There is a very simple explanation for this. Indeed, we have
v3 “ v2 ´ v1. Thus, in any linear combination of v1,v2,v3, we may substitute
v2 ´ v1 in place of v3 and thus rewrite it as a linear combination of v1,v2.
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The above example suggests that if an element of S is a linear combination of
the remaining elements of S, then it may be removed from S without diminishing
the span. We will establish this rigorously, but first we set up some notation for
dealing with linear combinations of an arbitary set.

Convention 15.9. Let V be a vector space. Let I be a set of indices (i.e.
labels) and let S “ tviuiPI be a family of elements of V indexed by I, possibly with
repetitions. (Thus, we may have vi “ vj for some i ‰ j.) Then, in general, if I is
an infinite set, the sum

ř

iPI vi makes no sense at all. However, if all but finitely
many of the vi are equal to zero, it can be interpreted in a meaningful way – we
just interpret it as the sum of the non-zero terms.

This convention is particularly useful for expressing linear combinations of sets.
Let S be an arbirary set of elements of V . Then an arbitrary linear combination
of elements of S may be written as

ř

vPS avv where we assume that all but finitely
many of the av are equal to 0. Thus, all but finitely many of the vectors avv are
equal to 0 and so the given expression is interpreted as the sum of the finitely many
non-zero terms. This makes it unnecessary to keep track of the n in Definition 15.6
when we speak of an arbitrary linear combination of elements of S. The constant
av will be called as the coefficient of v in the given expression.

Lemma 15.10. Let V be a vector space and let S be a subset of V . Suppose v
is an element of S such that it is a linear combination of the elements of the set
Sztvu. Then spanpSq “ spanpSztvuq.

Proof. Let T “ Sztvu. It is clear that spanpT q Ă spanpSq. We need to show
that spanpSq Ă spanpT q.

By assumption, v “
ř

wPT aww where aw P F for all w and all but finitely
many of them are zero. Now let u be in spanpSq. We write u “

ř

wPS bww where
bw P F for all w and all but finitely many of them are zero.

Thus,

u “
ÿ

wPS

bww

“ bvv `
ÿ

wPT

bww

“

˜

ÿ

wPT

pbvawqw

¸

`

˜

ÿ

wPT

bww

¸

“
ÿ

wPT

pbvaw ` bwqw.

As only finitely many of the aw and bw are non-zero, only finitely many of the
expressions pbvaw ` bwq are non-zero. Thus, the final expression we have obtained
still makes sense and represents a linear combination of elements of T . Thus, it
follows that w P spanpT q. �

Thus, as far as the span is concerned, elements of S that are linear combinations
of the other elements are superfluous and may be removed from S. We now consider
sets which cannot be shrunk in this manner.

Definition 15.11. Let V be a vector space and let S be a subset of V . We
say that S is a linearly independent set if for every element v of S, we have v R
spanpSztvuq. In this case, the elements of S are also said to be linearly independent.
If the elements of S are not linearly independent, we say that they are linearly
dependent.

Proposition 15.12. Let V be a vector space and let S be a subset of V . Then
the following statements are equivalent:
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(1) Every element of spanpSq can be uniquely written in the form
ř

vPS avv.
(2) Suppose that some linear combination

ř

vPS avv of elements of S is equal
to 0. Then av is equal to 0 for all v P S.

(3) The set S is linearly independent.

Proof. Suppose (1) is true. Then
ř

vPS avv and
ř

vPS 0 ¨ v are two ways of
expressing 0 as a linear combination of elements of S. Since we are assuming (1),
it follows that these are the same and hence av “ 0 for all v P S. Thus (1) implies
(2).

Suppose (2) is true. If (3) is not true, there exists an element v P S such that
v “

ř

wPSztvu aww. Then the linear combination

p´1q ¨ v `
ÿ

wPSztvu

aww

is equal to 0. But then since we are assuming (2), all the coefficients in this expres-
sion must be equal to 0. This implies ´1 “ 0, which is a contradiction. Thus, (3)
must be true. Thus (2) implies (3).

Suppose (3) is true. If (1) is not true, there exists an element which can be
expressed as a linear combination of elements of S in two distinct ways. In other
words, there exist expressions

ř

wPS aww and
ř

wPS bww which are equal, but the
coefficients do not match. In other words, there is some v P S such that av ‰ bv.
Thus

pav ´ bvq ¨ v “
ÿ

wPSztvu

pbw ´ awq ¨w,

and hence

v “
ÿ

wPSztvu

ˆ

bw ´ aw
av ´ bv

˙

¨w.

This shows that S is not linearly independent, which contradicts (3). Thus, (1)
must be true. So, we see that (3) implies (1).

Thus, the three given statements are equivalent. �

Example 15.13. Let V be a vector space and let v be a non-zero element of
V . Then the set tvu is linearly independent.

Example 15.14. The standard basis of Fn is a linearly independent set.
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Bases of vector spaces

We saw in Proposition 15.12 that a set S is linearly independent if and only if
whenever we have an equation of the form

ÿ

vPS

avv “ 0,

we must have av “ 0 for all v. In general, any equation of the above sort is called
a linear relation between the elements of S. If all the av are equal to 0, we say that
this relation is trivial. Thus, our result can be summarized by saying that a set S
is linearly independent if and only if every linear relation between its elements is
trivial.

Lemma 16.1. Let V be a vector space and let S be a subset of V which is linearly
independent. If v P V zspanpSq, then S Y tvu is linearly independent.

Proof. Let us denote the set S Y tvu by T . Suppose we have some linear
relation

ř

wPT aww “ 0. We will prove that aw “ 0 for all w P T .
If the coefficient av of v is 0, then we see that

ř

wPS aww “ 0. As S is
assumed to be linearly independent, we see that aw “ 0 for all w P S. Thus, as we
already have assumed that conclude that av “ 0, we conclude that aw “ 0 for all
w P S Y tvu “ T .

Now suppose that av ‰ 0. Then we may write

v “
ÿ

wPS

ˆ

aw
av

˙

¨w

which shows that v P SpanpSq, which contradicts our assumption. Thus, we cannot
have av ‰ 0. This completes the proof. �

Definition 16.2. Let V be a vector space. A subset S of V is said to be a
spanning set of V if spanpSq “ V . In this case, we also say that the set S spans V .

A basis of V is defined to be a spanning set which is linearly independent.

Convention 16.3. The plural form of the word “basis” is “bases”.

Clearly, every vector space has at least one spanning set. Indeed, the whole
space V can be considered as a spanning set of itself! However, it is not clear that
every vector space has a basis. This is true, and we will give a heuristic argument
below for this. However, we will not give a rigorous proof. First we deduce some
basic properties of bases from the definition.

Proposition 16.4. Let V be a vector space and let S be a basis of V .

(a) Let v P S. Then Sztvu does not span V .
(b) Let w P V zS. Then the set S Y twu is not linearly independent.

Proof. If Sztvu spans V , then v P spanpSztvuq. But then, by definition, S is
not linearly independent and hence cannot be a basis. This is a contradiction and
so our assumption that Sztvu must be wrong. This proves (a).

Suppose T :“ S Y twu is linearly independent. Then w cannot be in the span
of T ztwu “ S. This contradicts the given fact that spanpSq “ V . Thus, our
assumption that T is linearly independent must be incorrect. This proves (b). �
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This shows that a basis of a vector space is finely balanced between being a
spanning set and being linearly independent. If we try to enlarge it, it ceases to be
linearly independent. If we try to diminish it, it ceases to be a spanning set. The
following discussion will clarify this further.

Let us say that a subset S of V is a minimal spanning set if no proper subset T
of S is a spanning set of V . (Definition: A B is said to be a proper subset of a set A
if B Ă A, but B ‰ A.) So the above proposition shows that every basis is a minimal
spanning set. Conversely, suppose that S is a minimal spanning set. Then, we claim
that it must be linearly independent. Indeed, if it is not so, then there exists some
v P S such that v P spanpSztvuq. But then spanpSztvu “ spanpSq “ V . Thus,
Sztvu is also a spanning set of V , which contradicts the minimality of S. So, S is
linearly independent. Thus, a spanning set is a basis if and only if it is minimal.

On the other hand, we say that a subset S of V is a maximal linearly independent
set if no set T which properly contains S (i.e. S Ă T but S ‰ T ) is linearly
independent. The above proposition shows that every basis is a maximal linearly
independent set. Conversely, suppose that S is a maximal linearly independent set.
Then we claim that spanpSq “ V . Indeed, if this is not so, let v P V zspanpSq. Then
Lemma 16.1 shows that SYtvu is also a linearly independent set. This contradicts
the maximality of S. So, spanpSq “ V . Thus, a linearly independent set is a basis
if and only if it is maximal.

Existence of bases – a heuristic argument: Clearly every vector space V has at
least one linearly independent set, i.e. H. We saw in Lemma 16.1 that if a linearly
idependent set is not a basis, it can be enlarged. So if H is not a basis for V (i.e.
if V is not the zero space), then we enlarge it to a bigger linearly independent set
S1. If S1 is not a basis, we enlarge it to a bigger linearly independent set S2 . . . and
so on. This is almost a proof, but the phrase “and so on” at the end is not very
rigorous. It takes some work to get rid of that phrase and we will not do that in
this course.

We may also try to construct a basis “from the opposite end”. Since a basis is
a minimal spanning set, we could start with a large spanning set and then try to
shrink it till it becomes minimal, and hence linearly independent. So for instance,
we can start with the set V . If V is not a basis for itself, we can find a v in V such
that T1 :“ V ztvu is spans V . If T1 is not a basis, we can find remove yet another
vector from it, . . . and so on. Again, this argument can also be made rigorous with
some work.

Though we are not going to prove it in full generality, we will formally state
the result.

Theorem 16.5. Every vector space has a basis.

A special case:

Definition 16.6. A vector space V is said to be finite dimensional if it has a
finite spanning set.

Theorem 16.7. Let V be a finite dimensional vector space. Then V has a basis.
Indeed, any spanning set of V contains a subset which is a basis.

Proof. By assumption, there exists a finite set S such that spanpSq “ V .
Suppose |S| “ n. (Notation: For any set A, we will denote its cardinality by |A|.)
If S is not a basis, there exists an element v P S such that S1 :“ Sztvu spans V .
If S1 is not a basis, we can again remove an element from it in such a way that the
resulting set S2 spans V . We continue in this manner. This process can continue
for at most n steps since S has only n elements. Thus, we will find a basis within
n steps. �
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Question 16.8. Can we also construct a basis by enlarging linearly independent
sets?

Yes, we can, but it will take some work to show that the process terminates.

Proposition 16.9. Let V be a vector space and let pv1,v2, . . . ,vnq be an or-
dered sequence (an n-tuple) of elements of V . There exists a unique linear trans-
formation T : Fn Ñ V such that T peiq “ vi for 1 ď i ď n. Also, if S denotes the
set tv1, . . . ,vnu, then impT q “ spanpSq.

Proof. Any element x P Fn can be uniquely written as a linear combination
of the elements of the standard basis te1, . . . , enu in the form

x “ x1e1 ` x2e2 ` ¨ ¨ ¨ ` xnen.

Indeed, it is easy to see that the only xi which will satisfy this equation are the
ones that occur as entries of the matrix x.

Then, we define

T pxq “ x1v1 ` x2v2 ` ¨ ¨ ¨ ` xnvn.

Now we need to show that the function T defined by the above formula is linear.
So, let x and y be two elements of Fn and let a, b P F . Then we see that

ax` by “
n
ÿ

i“1

paxi ` byiqei.

As there can be only one way ax` by can be written as a linear combination of the
ei, we see that

T pax` byq “
n
ÿ

i“1

paxi ` byiqvi

“ a

˜

n
ÿ

i“1

xiei

¸

` b

˜

n
ÿ

i“1

yiei

¸

“ aT pxq ` bT pyq.

Thus, T is linear.
Now we need to show that T is unique. Suppose T1 : Fn Ñ V is another linear

transformation with the same properties. Then, given any x P Fn, we first write x
as a linear combination of the ei as above and then compute

T1pxq “ T1p
n
ÿ

i“1

xieiq “
n
ÿ

i“1

xiT1peiq “
n
ÿ

i“1

xivi “ T pxq.

This shows that T1 “ T . Thus T is the only linear transformation with the given
property.

Now we first show that that impT q Ă spanpSq. Suppose x P impT q. Thus,
there exists some a “ ra1, . . . , ans

tr in Fn such that T paq “ x. As a “
řn
i“1 aiei,

we see that

x “ T paq “ T p
ÿ

i“1

aieiq “
n
ÿ

i“1

aiT peiq “
n
ÿ

i“1

aivi.

This shows that x P spanpSq. As x P impT q was arbitary, we see that impT q Ă
spanpSq.

Now we show that spanpSq Ă impT q. Suppose x P spanpSq. Thus, there exist
a1, . . . , an such that x “

řn
i“1 aivi. Then, if a “

řn
i“1 aiei, we see that

T paq “ T p
n
ÿ

i“1

aieiq “
n
ÿ

i“1

aiT peiq “
n
ÿ

i“1

aivi “ x.

As x P spanpSq was arbitrary, we see that spanpSq Ă impT q. �
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Example 16.10. The above result is particularly obvious when V is equal
to Fm. Indeed, suppose we are given m vectors v1, . . . ,vn. Then the required
transformation T taking ei to vi is exactly the one associated with the matrix A
which has vi as its i-th column.

Proposition 16.11. Let V be a vector space and let pv1, . . . ,vnq be an n-tuple
of elements of V . Let T be the unique linear map from Fn to V such that T peiq “ vi
for 1 ď i ď n. Then the set S :“ tv1, . . . ,vnu is linearly independent if and only if
kerpT q “ t0u.

Proof. Suppose kerpT q ‰ t0u. Then, there exists a vector a “ ra1, . . . , ans
tr

in Fn such that T paq “ 0, but a ‰ 0. But, we see that a “
řn
i“1 aiei, and hence,

by definition,

T paq “
n
ÿ

i“1

aiT peiq “
n
ÿ

i“1

aivi.

Thus,
řn
i“1 aivi “ 0. But as a ‰ 0, we must have ai ‰ 0 for some i. Thus,

n
ÿ

i“1

aivi “ 0.

This is a non-trivial linear relation between the vi and hence they are not linearly
independent. Thus, if the set tv1, . . . ,vnu is linearly independent, we must have
kerpT q “ t0u.

Conversely, suppose that the kerpT q “ t0u. Suppose that the vi are not linearly
independent and so there exists a non-trivial linear relation

n
ÿ

i“1

aivi “ 0.

Then, if we set a “
řn
i“1 aiei “ ra1, . . . , ans

tr, we see that T paq “ 0. However as
the given linear relation is non-trivial, there is some ai ‰ 0 and hence a ‰ 0. This
contradicts our assumption that kerpT q “ t0u. Thus, we see that the vi must be
linearly independent. �

We have a corresponding result for spanning sets.

Proposition 16.12. Let V be a vector space and let pv1, . . . ,vnq be an n-tuple
of elements of V . Let T be the unique linear map from Fn to V such that T peiq “ vi
for 1 ď i ď n. Then the set S :“ tv1, . . . ,vnu is a spanning set of V if and only if
impT q “ V .

Proof. We saw in Proposition 16.9 that impT q “ spanpSq. Thus, we see that
S is a spanning set if and only if impT q “ spanpSq is equal to V . �

We will put the last two propositions together into a rather neat criterion or a
set to be a basis:

Corollary 16.13. Let V be a vector space and let pv1, . . . ,vnq be an n-tuple of
elements of V . Let T be the unique linear map from Fn to V such that T peiq “ vi
for 1 ď i ď n. Then the set S :“ tv1, . . . ,vnu is a basis of V if and only if T is an
isomorphism of vector spaces.

Proof. This is an immediate consequence of Proposition 16.11 and Proposition
16.12. �

In the next lecture, we will be able to resolve Question 16.8.



LECTURE 17

Dimension

We look at an example which illustrates the core idea behind Proposition 16.9.

Example 17.1. Let v1,v2,v3 P R2 be as follows:

v1 “

„

1
´1



v2 “

„

2
0



v3 “

„

5
´1



Let w1,w2,w3 in R2 be as follows:

w1 “

»

–

3
2
0

fi

fl w2 “

»

–

1
1
1

fi

fl w3 “

»

–

6
0
´2

fi

fl

Does there exist a linear transformation T : R2 Ñ R3 such that T pv1q “ w1,
T pv2q “ w2 and T pv3q “ w3?

Observe that v1 ` 2v2 “ v3. However, w1 ` 2w2 ‰ w3. Clearly, this implies
that no such T can exist.

More generally, suppose V and W are vector spaces and let v1, . . . ,vn P V and
w1, . . . ,wn P W . Suppose there exists a linear transformation T : V Ñ W such
that T pviq “ wi for all i. Then if we have a linear relatoin

a1v1 ` a2v2 ` . . . anvn “ 0,

we must also have
a1w1 ` a2w2 ` . . . anwn “ 0.

Thus, in informal terms, we may say the existence of such a transformation T implies
that every linear relation satisfied by v1, . . . ,vn is also satisfied by w1,w2, . . . ,wn.
However, note that the converse need not be true.

There is one obvious relation satisfied by the vi, namely the one in which all
ai “ 0. This is the trivial relation. Clearly, this relation is also satisfied by the
wi. However, any other relation satisfied by the vi imposes a condition on the wi,
which they must satisfy if the transformation T is to exist. However, suppose that
there are no non-trivial relations on the vi. In other words, suppose that v1, . . . ,vn
are linearly independent. Would that guarantee the existence of the transformation
T? Yes, it would. However, in general this transformation need not be unique. See
the following example.

Example 17.2. Let e1, e2 P R3 be as follows:

e1 “

»

–

1
0
0

fi

fl e2 “

»

–

0
1
0

fi

fl

Let w1,w2 in R3 be as follows:

w1 “

»

–

3
2
0

fi

fl w2 “

»

–

1
1
1

fi

fl

Again, we ask whether there exists a linear transformation T : R3 Ñ R3 such that
T pe1q “ w1, T pe2q “ w2?

75
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Actually, it turns out that there are infinitely many such linear transformations.

Indeed, let e3 “
“

0 0 1
‰tr

. Choose any element w3 of R3. Then, we can easily
construct a linear transformation T such that T peiq “ wi for i “ 1, 2, 3. This is
the linear transformation T pxq “ Ax where A is the 3ˆ 3 matrix which has wi as
its i-th column. As w3 was arbitrary, clearly there are infinitely many such linear
transformations.

A careful examination of the last example reveals why T was not unique. Pick-
ing the images of v1 and v2 only fixes the images for all the vectors that are in
the span of v1 and v2. However, for any v which is not in the span of these two
vectors, the image can be chosen freely, which allows us to create infinitely many
transformations having the required property. So, if one wants to ensure that T
is unique, the vi must also span V . Hence, they must form a basis of V . This is
exactly what we have in Proposition 16.9 since the “standard basis” is actually a
basis of Fn. In general, the analogue of Proposition 16.9 will hold for any basis.
This is proved below:

Proposition 17.3. Let V and W be vector spaces. Let pv1,v2, . . . ,vnq be
an ordered sequence (an n-tuple) of elements of V such that the set tv1, . . . ,vnu
is a basis of V . Let pw1,w2, . . . ,wnq be an ordered sequence of elements of W .
There exists a unique linear transformation T : Fn Ñ V such that T pviq “ wi for
1 ď i ď n. Also, if S denotes the set tv1, . . . ,vnu, then impT q “ spanpSq.

Proof. As usual, let e1, . . . , en be the standard basis of Fn. By Corollary
16.13, there exists a unique isomorphism S1 : Fn Ñ V such that S1peiq “ vi
for 1 ď i ď n. By Proposition 17.3, there exists a unique linear transformation
S2 : Fn Ñ W such that S2peiq “ wi for 1 ď i ď n. Let S´1

1 denote the inverse
of S1. Then, we define T to be the composition S2 ˝ S

´1
1 . In other words, T pvq is

defined to be S2pS
´1pvqq for every v P V . Then, it is easy to see that T pviq “ wi

for every i.
To see the uniqueness, suppose that T1 : V ÑW is some other linear transfor-

mation which satisfies T1pviq “ wi for every i. Then, consider the linear transfor-
mation T1 ˝ S1 : Fn ÑW . We see that

T1 ˝ S1peiq “ T1pS1peiqq “ T1pviq “ wi

for all i. However, we know that S2 is the unique linear transformation from Fn

to W such that S2peiq “ wi. Thus, we must have S2 “ T1 ˝ S1. Thus S2 ˝ S
´1
1 “

T1 ˝ S1 ˝ S
´1
1 “ T1. Thus T1 “ T . This proves the uniqueness of T . �

We will now use the results from the previous lecture to define the notion of
dimension and to resolve Question 16.8.

Lemma 17.4. Let m and n be two positive integers such that m ą n. Let
T : Fm Ñ Fn be a linear transformation. Then T cannot be injective.

Proof. We know that there exists an n ˆm matrix A such that T pxq “ Ax.
Let X1, . . . , Xm be variables and let X be the column matrix defined by

X “
“

X1 X2 ¨ ¨ ¨ Xm

‰tr
.

Consider the matrix equation AX “ 0. This is essentially a system of n linear
equations in m variables. If we apply the row reduction algorithm to this system,
there must be at least one free variable in the row reduced echelon form because
m ą n. This means that this system has at least one non-trivial solution, i.e. a
solution in which at least some Xi takes a non-zero value. This implies that there
exists some x P Fm such that x ‰ 0 and Ax “ 0. Thus, kerpT q is not the zero
space. By Lemma 15.3, this implies that T is not injective. �

This lemma has a useful corollary:
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Corollary 17.5. Let m and n be positive integers such that m ‰ n. Then Fm

and Fn are not isomorphic.

Proof. We may assume without loss of generality that m ą n. (If this is not
so, i.e. if n ą m, we may simply interchange the role of m and n in this argument.)
Then, Lemma 17.4 shows that there is no injective linear transformation from Fm

to Fn. In particular, there is no isomorphism from Fm to Fn. �

Theorem 17.6. Let m be a positive integer. Let V be a vector space having
a basis tv1, . . . ,vmu. Let n be another positive integer and let tw1, . . . ,wnu be a
linearly independent set in V . Then n ď m.

Proof. Suppose that n ą m. We will obtain a contradiction.
Let e1, . . . , em be the standard basis of Fm and let f1, . . . , fn be the standard

basis of Fn. Then, we know from Corollary 16.13 that there exists a unique iso-
morphism S : Fm Ñ V such that Speiq “ vi for 1 ď i ď m. By Proposition
16.9, there exists a unique linear transformation T : Fn Ñ V such that T pfiq “ wi

for 1 ď i ď n. By Proposition 16.11, as tw1, . . . ,wnu is linearly independent,
kerpT q “ t0u. By Lemma 15.3, we see that T is injective. Then, the linear trans-
formation S´1 ˝ T : Fn Ñ Fm is injective. (Exercise: Do you see why this linear
transformation is injective?)

Fn

Fm W

S´1
˝T

T

S

However, we know from Lemma 17.4 that this linear transformation cannot be
injective. This is a contradiction. Thus, we must have n ď m. �

The following corollary is an immediate consequence:

Corollary 17.7. Let V be a finite dimensional vector space. Then, any lin-
early independent set in V is finite. In particular, any basis of V is finite.

Proof. Since V is finite dimensional, it has a finite spanning set S. By The-
orem 16.7, there exists a subset of S which is a basis of V . Thus, V has a finite
basis. Suppose that it has a basis consisting of m elements where m is a positive
integer. Then, Theorem 17.6 shows that any linearly independent subset of V can
have at most m elements. Thus, any linearly independent subset of V is finite. �

Theorem 17.8. Let V be a finite dimensional vector space. Any two bases of
V have the same number of elements.

Proof. Let B1 and B2 be two bases of V . By Corollary 17.7, both B1 and B2

are finite sets. Suppose B1 has m elements and B2 has n elements. By Theorem
17.6, we see that m ď n and n ď m. Thus m “ n. �

Finally, we are now able to define the dimension of a finite dimensional space!

Definition 17.9. The dimension of a finite dimensional space V is the number
of elements in any basis of V .

As promised, we also answer Question 16.8.

Constructing a basis by expanding a linearly independent set:
We will show that in a finite dimensional vector space, any linearly independent

set can be expanded to a basis. (This result is actually true even for spaces which
are not finite dimensional.)

Let n be an integer and let V be an n-dimensional vector space. Let S be a
linearly independent subset of V . Suppose that |S| “ m. We will use induction to
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construction a sequence S0 Ă S1 Ă S2 . . . of subsets of V with S0 “ S and show
that this sequence actually must terminate at some finite stage to give a basis of V .

If S is a spanning set, it is also a basis. If not, we find a non-zero element v1 of
V such that v1 R spanpSq. We define S1 “ S Y tv1u. We know from Lemma 16.1
that S1 is a linearly independent set.

Now, suppose that the linearly independent set Sk has been constructed for
some integer k. If Sk spans V , then Sk is a basis of V . If not, there exists some
vk`1 P V such that vk`1 R spanpSkq. We define Sk`1 “ Sk Y tvk`1u. We know
from Lemma 16.1 that Sk`1 is a linearly independent set.

Note that |Sk| “ k `m for every k. However, as Sk is a linearly independent
subset of V , by Theorem 17.6, we must have k `m ď n. Thus, this process can
continue only for n ´m steps and Sn´m will actually be a basis of V . We record
our result as follows:

Theorem 17.10. Let V be a finite dimensional vector space. Let S be a linearly
independent subset of V . Then, there exists a basis B of V such that S Ă B.
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Matrix representation with respect to a basis

Let V be a vector space. Let tv1, . . . ,vnu be a basis of V . Let v be any element
of V . By Proposition 15.12 we know that there exist unique elements a1, . . . , an P F
such that

v “ a1v1 ` a2v2 ` ¨ ¨ ¨ ` anvn.

Thus, the sequence of elements of F pa1, . . . , anq can be said to be the list of coor-
dinates of the element v with respect to the basis tv1, . . . ,vnu. However, note that
the order in which the elements v1, . . . ,vn are listed does matter. For instance, if
we were to list these elements as v2,v1,v3, . . . ,vn, then the associated sequence
of coordinates becomes pa2, a1, a3, . . . , anq. Thus, we should be working with an
ordered basis (i.e. a basis with a given fixed order). If fix an order on the basis,

such as pv1, . . . ,vnq, then we can associate the column matrix
“

a1 a2 . . . an
‰tr

to the element v. This gives us a bijection between the vector space V and the set

Fn. However, the column matrix
“

a1 a2 . . . an
‰tr

depends on the choice of the
ordered basis pv1, . . . ,vnq. We will now explore how this column matrix associated
to v changes if a different ordered basis is used.

Above, the ordered basis has been represented by an n-tuple (i.e. a list of n-
elements) pv1, . . . ,vnq. It will be more convenient to look at this n-tuple as a an
1ˆn matrix (i.e. a “row matrix”) with entries from the vector space V , for reasons
that will soon become clear. To this end, we introduce the notion of matrices with
vector entries.

Definition 18.1. Let V be a vector space. Let m and n be positive integers.
An mˆn matrix A with entries from V is a collection of mn elements of V arranged
in a rectangular array as follows:

»

—

—

—

—

—

–

v11 ¨ ¨ ¨ ¨ ¨ ¨ v1n

...
...

...
...

vm1 ¨ ¨ ¨ ¨ ¨ ¨ vmn

fi

ffi

ffi

ffi

ffi

ffi

fl

The element in the i-th row and j-th column is called the pi, jq-entry of the matrix
and is denoted in the above representation as vij . The above matrix may also be
written in the short form pvijqi,j if the number of rows and columns is understood.

The set of all mˆn matrices with entries from V will be denoted by MmˆnpV q.

Remark 18.2. Recall that for positive integers m and n, the set MmˆnpF q of
mˆn matrices having entries from F forms a vector space with the obvious notions
of addition and scalar multiplication. It is easy to see that MmˆnpV q too is a vector
space.

79
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Example 18.3. Let us take V “ R2. Then an example of a 2ˆ 3 matrix with
entries in V would look like the following:

»

—

—

—

—

–

„

2
3

 „

1
0

 „

0
0



„

3
1

 „

2
0

 „

3
3



fi

ffi

ffi

ffi

ffi

fl

Of course, this looks cumbersome. Normally, we will give the 2ˆ 1 matrices inside
the big matrix some names like v11,v12, etc. and write this matrix as

„

v11 v12 v13

v21 v22 v23



which looks a little better, but means the same thing.
Of course, it is not necessary that we will work only with vector spaces of the

form R2, R3, etc. We may also be working with an abstract vector spaces V , in
which case the matrix will not look like the first one in this example.

Obviously, for any positive integers m and n, the set of all m ˆ n matrices
with entries from V forms a vector space. However, it is clear that we cannot
meaningfully define the product of two matrices with entries from V since the
product of two vectors is not defined. On the other hand, using scalar multiplication,
we can multiply a matrix having entries from V with a matrix having entries from
F , as long as their shapes are compatible.

Convention 18.4.

(a) In general, we will denote matrices with entries in a vector space V with
capital letters in a calligraphic font, such as A, B, etc. Matrices with
entries in a field F will be denoted with ordinary capital letters, such as
A, B, etc.

(b) If V is a vector spaces and v, is in V , the 1ˆ 1 matrix
“

v
‰

will simply be
written as v (without the square brackets). This abuse of notation will be
seen to be useful below.

Definition 18.5. (Definition of matrix product) Let V be a vector space and
let A “ pvijqi,j be an m ˆ n matrix having entries from V . We will define its
product with matrices having entries from F as follows:

(1) Let B “ pbjkqj,k be an n ˆ p matrix with entries in F . The product AB
is an mˆ p matrix X “ pwikqi,k having entries in V such that

wik “

n
ÿ

j“1

bjkvij .

(2) Let C “ pckiqk,i be an p ˆm matrix with entries in F . The product CA
is a pˆ n matrix X “ pwkjqk,j having entries in V such that

wkj “

m
ÿ

i“1

ckivij .

Lemma 18.6. The above product satisfies the associative property and also the
distributive property with respect to addition of matrices.

Proof. (The proof is left as an an easy exercise.) �

Generally, we will not be interested in very big matrices having entries in V .
Indeed, we will only consider row matrices (i.e. matrices having a single row) with
entries in V . The most common use will be the following:
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Definition 18.7 (Ordered basis). Let n be a positive integer. Let V be a an
n-dimensional vector space. An ordered basis of V is a 1ˆ n matrix

B “
“

v1 v2 ¨ ¨ ¨ vn
‰

having entries in V such that tv1, . . . ,vnu is a basis of V .

Example 18.8. Recall that te1, e2, e3u denotes the standard basis of R3 (so
that ei has 1 in the i-th row and 0’s elsewhere). Then,

“

e1 e2 e3
‰

is an ordered basis of R3, and so is
“

e3 e2 e1
‰

.

Note that these ordered bases are different even though they have the same entries.

Example 18.9. The 1ˆ 2 matrix
«

„

1
1

 „

1
´1



ff

is an ordered basis of R2.

Definition 18.10. Let n be a positive integer. Let V be an n-dimensional
vector space. Let B “

“

v1 ¨ ¨ ¨ vn
‰

be an ordered basis of V . Let v any element
of V . We write v as a linear combination of v1, . . . ,vn as follows:

v “ a1v1 ` a2v2 ` ¨ ¨ ¨ ` anvn.

Then, we define the matrix representation of v with respect to B by

MBpvq “

»

—

—

–

a1
...
an

fi

ffi

ffi

fl

.

(This is well-defined because the ai are uniquely determined by v.)

With the notation in the above definition, we see that

B ¨MBpvq “
“

v1 ¨ ¨ ¨ vn
‰

¨

»

—

—

–

a1
...
an

fi

ffi

ffi

fl

“
“

a1v1 ` ¨ ¨ ¨ ` anvn
‰

“
“

v
‰

.

However, by Convention 18.4, Part (b), we are choosing to write the 1ˆ1 matrix
“

v
‰

as just v. Thus, we have proved the following rather elegant result.

Lemma 18.11. Let V be a finite dimensional vector space. Let B be an ordered
basis of V and let v be an element of V . Then,

v “ B ¨MBpvq.

We will now strengthen this result as follows:

Theorem 18.12. Let n be a positive integer. Let V be an n-dimensional vector
space. Let B be an ordered basis of V . Then, we define functions φ : V Ñ Fn and
ψ : Fn Ñ V by

φpvq “MBpvq

for every v P V , and

ψpxq “ B ¨ x
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for every x P Fn. Then, φ and ψ are linear transformations. Also, φ and ψ are
inverses of each other and thus define an isomorphism of vector spaces between V
and Fn.

Proof. Before we prove the linearity, we will show that φ and ψ are inverses
of each other. This will show that they set up a bijection between V and Fn

(though we will still need to check the linearity after that to establish that these
are isomorphisms of vector spaces). For v P V , we have

ψpφpvqq “ B ¨ φpvq “ B ¨MBpvq “ v

where the last equality follows from the previous lemma. Thus, ψ ˝φ is the identity
function on V . On the other hand, suppose x P Fn. Suppose

x “

»

—

—

–

x1
...
xn

fi

ffi

ffi

fl

.

Then

ψpxq “ B ¨ x “ x1v1 ` ¨ ¨ ¨ ` xnvn.

By definition, we have

MBpx1v1 ` ¨ ¨ ¨ ` xnvnq “

»

—

—

–

x1
...
xn

fi

ffi

ffi

fl

“ x.

This shows that φ ˝ φ is the identity function on Fn. Thus φ and ψ are inverses of
each other, and are hence bijections.

Suppose v and w are elements of V and let a, b P F . We first write v and w as
linear combinations of v1, . . . ,vn:

v “ a1v1 ` ¨ ¨ ¨ ` anvn

w “ b1v1 ` ¨ ¨ ¨ ` bnvn

Then, we have

av ` bw “ pa ¨ a1 ` b ¨ b1qv1 ` ¨ ¨ ¨ ` pa ¨ an ` b ¨ bnqvn.

By definition, we have the following equalities:

MBpvq “

»

—

—

–

a1
...
an

fi

ffi

ffi

fl

MBpwq “

»

—

—

–

b1
...
bn

fi

ffi

ffi

fl

MBpav ` bwq “

»

—

—

–

a ¨ a1 ` b ¨ b1
...

a ¨ an ` b ¨ bn

fi

ffi

ffi

fl

Thus, we see that MBpav ` bwq “ aMBpvq ` bMBpwq and hence

φpav ` bwq “ aφpvq ` bφpwq.

This shows that φ is linear, and hence is a vector space isomorphism. �

Remark 18.13. The fact that the map ψ is a bijection implies that if x and
y are in Fn such that B ¨ x “ B ¨ y, then x “ y. Thus, it is as if we can “cancel”
B from the equation B ¨ x “ B ¨ y. Of course, one should understand that this
“cancellation” is not really “division by B”. Instead, it just means that we are
applying the function φ to both sides of the equation and applying Lemma 18.11.

We will now generalize this construction a little further.
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Definition 18.14. Let n be a positive integer and let V be an n-dimensional
vector space. Let B be an ordered basis of V . Let k be a positive integer and let

A “
“

w1 ¨ ¨ ¨ wk

‰

be a 1 ˆ k matrix having entries in V . Then, we define the matrix representation
of A with respect to B to be a n ˆ k matrix, denoted by MBpAq such that its i-th
column is equal to MBpwiq.

Example 18.15. Let us take V “ R2 let B “
“

e1 e2
‰

be the standard basis
with the usual order. Suppose

A “

«

„

3
1

 „

2
0

 „

3
3



ff

.

Then,

MBpAq “
„

3 2 3
1 0 3



.

Now consider the ordered basis

C “

«

„

1
1

 „

1
´1



ff

.

Then, we observe the following equalities:
„

3
1



“ 2 ¨

„

1
1



` 1 ¨

„

1
´1



„

2
0



“ 1 ¨

„

1
1



` 1 ¨

„

1
´1



„

3
3



“ 3 ¨

„

1
1



` 0 ¨

„

1
´1



Thus,

MCpAq “
„

2 1 3
1 1 0



.

Example 18.16. The most important use of this concept will be when A is
taken to be an ordered basis. So, suppose V is an n-dimensional vector space and
B1 and B2 are two ordered bases of V . Then MB1

pB2q and MB2
pB1q are both nˆn

matrices. These matrices will be very useful in result that we will prove below.
For example, consider the ordered bases

B “

«

„

1
0

 „

0
1



ff

.

and

C “

«

„

1
1

 „

1
´1



ff

of R2. Then,

MBpCq “
„

1 1
1 ´1



and

MCpBq “
„

1{2 1{2
1{2 ´1{2



.

The following result is a generalization of Theorem 18.12:
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Theorem 18.17. Let n be a positive integer and let V be an n-dimensional
vector space. Let k be a positive integer. Let B be an ordered basis of V . Then, we
define functions φ : M1ˆkpV q ÑMnˆkpF q and ψ : MnˆkpF q ÑM1ˆkpV q by

φpAq “MBpAq

for every A PM1ˆkpV q, and

ψpXq “ B ¨A
for every X PMnˆkpF q. Then, φ and ψ are linear transformations. Also, φ and ψ
are inverses of each other and thus define an isomorphism of vector spaces between
M1ˆkpV q and MnˆkpF q.

Proof. This proof is very similar in structure to the proof of Theorem 18.12
and so I will merely sketch it.

Suppose B “
“

v1 ¨ ¨ ¨ vn
‰

. Let A PM1ˆkpV q. So

A “
“

w1 ¨ ¨ ¨ wk

‰

for w1, . . . ,wk P V . We write each wi as a linear combination of the elements of
the basis.

wi “ a1iv1 ` ¨ ¨ ¨ ` anivn

Thus, by definition, we have

φpAq “MBpAq “

»

—

—

–

a11 ¨ ¨ ¨ a1k
...

...
an1 ¨ ¨ ¨ ank

fi

ffi

ffi

fl

.

Thus,

ψpφpAqq “ B ¨MBpAq

“
“

v1 ¨ ¨ ¨ vn
‰

»

—

—

–

a11 ¨ ¨ ¨ a1k
...

...
an1 ¨ ¨ ¨ ank

fi

ffi

ffi

fl

.

It is easy to see that the matrix product above is equal to A. Thus, we see that
ψpφpAq “ A.

The rest of the proof is left as an exercise. To complete this proof, you need to
do the following:

‚ Show that φpψpXqq “ X for any X PMnˆkpF q. This shows that φ and ψ
are inverses of each other and are thus bijections.

‚ Show that φ is linear. (Look at the corresponding argument in the proof
of Theorem 18.12.)

�

Remark 18.18. The analogue of Remark 18.13 also holds in this situation. In
other words, if X and Y are elements of MnˆkpF q such that B ¨X “ B ¨Y , then we
can apply φ to both sides to get X “ Y .

Finally, we are able to answer the question raised at the beginning of this
lecture.

Theorem 18.19. Let V be a finite dimensional vector space. Let B1 and B2 be
two ordered bases of V . Let v P V . Then,

MB2
pvq “MB2

pB1q ¨MB1
pvq.
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Proof. We have the equalities

v “ B2 ¨MB2
pvq

and

v “ B1 ¨MB1pvq

“
`

B2 ¨MB2
pB1q

˘

¨MB1
pvq

“ B2 ¨
`

MB2
pB1q ¨MB1

pvq
˘

.

By applying Remark 18.13 to these equations, we see that

MB2
pvq “MB2

pB1q ¨MB1
pvq

as required. �

Example 18.20. We consider the bases B and C of R2 defined in Example
18.16. Let v P R2 be given by

v “

„

1
5



.

What is MCpvq?
The straightforward way to do this is to simply write v as a linear combination

of the vectors appearing in C. The required coefficients can be found by solving a
system of linear equations.

Using the above theorem, we are able to do this computation a little faster.
Observe that the given 2ˆ 1 matrix is actually the matrix representation of v with
respect to the standard basis. Thus,

MBpvq “

„

1
5



.

Thus,

MCpvq “MCpBq ¨MBpvq

“

„

1{2 1{2
1{2 ´1{2

 „

1
5



“

„

3
´2



.

If B1 and B2 are ordered bases of a vector space V , the matrices MB1
pB2q and

MB1
pB2q are called the “change of basis” matrices since they allow us to go back

and forth between the matrices representations of a vector with respect to the two
bases. We will note one important property of these matrices.

Proposition 18.21. Let V be a finite dimensional vector space. Let B1 and
B2 be two ordered bases of V . Then, the matrices MB1pB2q and MB2pB1q are mul-
tiplicative inverses of each other. (In particular, these two matrices are invertible.)

Proof. Let n “ dimpV q and let In denote the n ˆ n identity matrix. We
observe that

B1 ¨ In “ B1

“ B2 ¨MB2
pB1q

“
`

B1 ¨MB1
pB2q

˘

¨MB2
pB1q

“ B1 ¨
`

MB1
pB2q ¨MB2

pB1q
˘

.

Thus, by Remark 18.18, we see that

In “MB1pB2q ¨MB2pB1q.

This proves the result. �





LECTURE 19

Matrix representation of a linear transformation

Let V be an m-dimensional vector space and let W be an n-dimensional vector
space. Let

B “
“

v1 ¨ ¨ ¨ vm
‰

and

C “
“

w1 ¨ ¨ ¨ wn

‰

be ordered bases of V and W respectively.
Let T : V Ñ W be a linear transformation. We saw in Theorem 18.12 that we

have linear maps φB : V Ñ Fm and ψB : Fm Ñ V given by

φBpvq “MBpvq

and

ψBpxq “ B ¨ x.

These two linear transformations are actually inverses of each other. Similarly, we
have linear transformations φC : W Ñ Fn and ψC : Fn Ñ W given by similar
formulas. Thus, we have the following diagram

V Fm

W Fm

φB

T
ψB

φC

ψC

All the functions in the above diagram are linear transformations. Thus, we obtain
a linear transformation from Fm to Fn defined by φC ˝ T ˝ ψB.

V Fm

W Fm

φB

T
ψB

φC˝T˝ψB
φC

ψC

Any linear transformation from Fm to Fn is given by left-multiplication by an nˆm
matrix. We will denote this matrix by MB

C pT q and call it the matrix representation
of T with respect to B and C. Thus, the above diagram can also be written as

V Fm

W Fm

φB

T
ψB

xÞÑMB
C pT qx

φC

ψC

First we observe that the above diagram is an example of a “commutative
diagram”, which means that if we go from one point in the diagram to the other
following different paths, the result is the same.

For instance, in this diagram, there are two sequences of functions that lead
from V to Fn:

(1) First go from V to Fm using φB, and then go from Fm to Fn using
φC ˝ T ˝ ψB. This gives us the composition pφC ˝ T ˝ ψBq ˝ φB.
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(2) First go from V to W using T . and then go from W to Fn using φC . This
gives us the composition φC ˝ T .

As ψB ˝ φB is the identity on V , it is easy to see that these two compositions are
actually the same.

Let us understand what this means. Suppose we start with an element v P V .
The first path in the diagram (going to the right and then going down) gives us
the element MB

C pT q ¨MBpvq. The second path (going down and then going to the
right) gives us the element MCpT pvqq. Thus, we have

M@CpT pvqq “MB
C pT q ¨MBpvq.

Multiplying by the row matrix C on both sides gives us

T pvq “ C ¨MB
C pT q ¨MBpvq

This should be seen as the analogue of Lemma 18.11 for linear transformations.
It tells us the relationship between the linear transformation T and its matrix
representation. We record it for future reference:

Lemma 19.1. Let V and W be finite dimensional vector spaces with ordered
bases B and C respectively. Let T : V ÑW be a linear transformation. Then,

T pvq “ C ¨MB
C pT q ¨MBpvq.

As in the previous lecture, we would now like to understand how the matrix
representation of a linear transformation changes if the basis is changed. However,
note that the matrix representation of a linear transformation depends on a choice
of basis in both the domain and the codomain. Thus, we need to obtain a formula
that can handle changes of both these bases.

Theorem 19.2. Let V and W be finite dimensional vector spaces. Let T : V Ñ
W be a linear transformation. Let B1, B2 be ordered bases of V and let C1, C2 be
ordered bases of W . Then,

MB2

C2
pT q “MC2pC1q ¨M

B1

C1
pT q ¨MB1

pB2q.

Proof. Let v be any element of V . By Lemma 19.1, we know that

T pvq “ C2 ¨MB2

C2
pT q ¨MB2

pvq.

Similarly, we have

T pvq “ C1 ¨MB1

C1
pT q ¨MB1

pvq

“
`

C2 ¨MC2
pC1q

˘

¨MB1

C1
pT q ¨

`

MB1
pB2q ¨MB2

pvq
˘

.

Thus, we have two expressions for T pvq. Equating them and then “cancelling out
C2” by using Remark 18.13, we see that

MB2

C2
pT q ¨MB2pvq “MC2pC1q ¨M

B1

C1
pT q ¨MB1pB2q ¨MB2pvq.

This equality holds for any element v of V .
Suppose dimpV q “ m. As v varies over all elements of V , the matrix MB2

pvq
varies over all elements of Fm. Thus, the above equation shows that for any element
x of Fm, we have

MB2

C2
pT q ¨ x “MC2pC1q ¨M

B1

C1
pT q ¨MB1pB2q ¨ x.

If we take x to be the element ei in the standard basis of Fm, we get that

MB2

C2
pT q ¨ ei “MC2

pC1q ¨MB1

C1
pT q ¨MB1

pB2q ¨ ei.

Here, the left hand side of the equation is the i-th column of the matrix MB2

C2
pT q

and the right hand side is the i-th column of the matrix MC2pC1q¨M
B1

C1
pT q¨MB1pB2q.

Letting i vary from 1 to m, we see that these two matrices have identical columns,
and hence must be equal. This proves the result. �



LECTURE 20

Further comments on change of basis

Changing bases successively:
Let V be a finite dimensional vector space and let B1, B2, B3 be three ordered

bases of V . Let v P V . Then, we know that

v “ B3MB3pvq.

On the other hand

v “ B1MB1
pvq

“ B2 ¨MB2pB1q ¨MB1pvq

“ B3 ¨MB3pB2q ¨MB2pB1q ¨MB1pvq.

Comparing these two expressions for v and “cancelling out B3” on the left using
Remark 18.13, we see that

MB3pvq “MB3pB2q ¨MB2pB1q ¨MB1pvq.

However, we also know that

MB3
pvq “MB3

pB1q ¨MB1
pvq.

Thus, we have

MB3
pB1q ¨MB1

pvq “MB3
pB2q ¨MB2

pB1q ¨MB1
pvq.

This equation holds for all v P V .
Now, suppose dimpV q “ m. Then, as v varies over all elements of V , the matrix

MB1
pvq varies over all elements of Fm. Thus, we see that for any x P Fm, we have

MB3
pB1q ¨ x “MB3

pB2q ¨MB2
pB1q ¨ x.

Now, an argument similar to the one used in the proof of Theorem 19.2, we see that
the two matrices MB3pB1q and MB3pB2q ¨MB2pB1q are equal. Thus, we have proved
the following important result:

Theorem 20.1. Let V be a finite dimensional vector space and let B1, B2, B3

be ordered bases of V . Then,

MB3
pB1q “MB3

pB2q ¨MB2
pB1q.

Here is an example of how this theorem can be useful:

Example 20.2. Let us consider two ordered bases of R2 given by

B1 “

«

„

1
1

 „

1
´1



ff

.

and

B2 “

«

„

2
3

 „

1
5



ff

.

We would like to compute MB1
pB2q. In order to do this, we need to compute the

matrix representations of every element of B2 with respect to B1. For this, we will
need to solve a system of linear equations. This needs to be done for both elements
of B2, and thus we have to solve two systems consisting of two equations each. If
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we had been working with an n-dimensional space, such a problem would require us
to solve n systems, each containing n linear equations. However, the above formula
provides us with an easier way.

Let

S “

«

„

1
0

 „

0
1



ff

be the standard ordered basis of R2. Then, we easily see that

MSpB1q “

„

1 1
1 ´1



and

MSpB2q “

„

2 1
3 5



.

Thus,

MB1
pB2q “MB1

pSq ¨MSpB2q

“MSpB1q
´1 ¨MSpB2q

“

„

1 1
1 ´1

´1 „
2 1
3 5



.

Characterizing “change of basis” matrices:
We have seen before that the “change of basis” matrices are invertible. We will

now show that any invertible matrix is a change of basis matrix.

Exercise 20.3. Let V be an n-dimensional vector space. Let B be an ordered
basis. Let A be an invertible matrix. Show that B ¨A is an ordered basis of B.

(Note that we already know that if B ¨ A is a basis of V , then A is invertible!
Do you understand why?)

Solution. Let
B “

“

v1 ¨ ¨ ¨ vn
‰

and let
B ¨A “

“

w1 ¨ ¨ ¨ wn

‰

.

Suppose A is invertible. Thus, there exists an n ˆ n matrix B “ pbijqi, j such
that AB “ In. Thus,

B “ B ¨ In “ pB ¨Aq ¨B.

The product pB ¨ Aq ¨ Bq is a 1ˆ n matrix, the p1, jq-entry of which is
řn
i“1 bijwi.

However, the above equation tells us that this matrix is actually equal to the 1ˆ n
matrix B, the p1, jq-entry of which is just vj . Thus, vj is in the span of the set
tw1, . . . ,wnu. As this is true for all j, we see that spanpw1, . . . ,wnq contains every
vj . Thus, is equal to the whole of V . We conclude that the set tw1, . . . ,wnu is a
spanning set of V . Since it has n elements, it is a basis of V . Thus, B ¨ A is an
ordered basis of V . �



LECTURE 21

Rank-Nullity Theorem

Theorem 21.1 (Rank-Nullity theorem). Let V,W be vector spaces and let T :
V ÑW be a linear transformation. Then,

dimpV q “ dimpkerpT qq ` dimpimpT qq.

The number dimpimpT qq is sometimes called the rank of T and dimpkerpT qq is
called the nullity of T .

Proof. Let dimpV q “ n and let dimpkerpT qq “ m. Then, we know that
m ď n. Let tv1, . . . ,vmu be a basis of kerpT q. Then, the set tv1, . . . ,vnu is a
linearly independent subset of V . Any linearly independent subset is contained in
some basis. Thus, we can expand this set to a basis tv1, . . . ,vm,vm`1, . . . ,vnu of
V .

We will show that the set tT pvm`1, . . . , T pvnqu, which contains n´m elements,
is a basis of impT q. This will prove complete the proof of the theorem.

Let w P impT q. Thus, there exists v P V such that T pvq “ w. As tv1, . . . ,vnu
is a basis of V , there exist a1, . . . , an P F such that

v “ a1v1 ` ¨ ¨ ¨ anvn.

Thus

w “ T pvq

“ T pa1v1 ` ¨ ¨ ¨ anvnq

“ a1T pv1q ` ¨ ¨ ¨ anT pvnq.

As T pviq “ 0 for 1,ď i ď m, we see that

w “ am`1T pvm`1q ` ¨ ¨ ¨ ` anT pvnq.

This shows that the set tT pvm`1, . . . , T pvnqu spans impT q.
It remains to be proved that the set tT pvm`1, . . . , T pvnqu is linearly indepen-

dent. Suppose there exist elements am`1, . . . , an P F such that

am`1T pvm`1q ` ¨ ¨ ¨ ` anT pvnq “ 0.

Thus,

T pam`1vm`1 ` ¨ ¨ ¨ ` anvnq “ 0,

which implies that am`1vm`1 ` ¨ ¨ ¨ ` anvn P kerpT q. As tv1, . . . ,vmu is a basis of
kerpT q, there exist elements a, . . . , am P F such that

a1v1 ` . . .` amvm “ am`1vm`1 ` ¨ ¨ ¨ ` anvn.

Thus,

a1v1 ` . . .` amvm ` p´am`1qvm`1 ` ¨ ¨ ¨ ` p´anqvn “ 0.

As tv1, . . . ,vnu is a linearly independent set, this implies that ai “ 0 for all i,
1 ď i ď n. In particular, we have ai “ 0 for all i, 1 ď i ď m. This shows that the
set tT pvm`1, . . . , T pvnqu is linearly independent. �
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92 21. RANK-NULLITY THEOREM

Example 21.2. Consider the morphism T : R2 Ñ R given by T pxq “ Ax where
A “

“

2 1
‰

. Then it is clear that impT q is not the zero subspace of R. For instance,

we can see that T

˜

„

1
0



¸

“ 2 ‰ 0. Thus, as any non-zero subspace of R is equal to

R, we see that impT q “ R. Thus, dimpimpT qq “ 1. Then, the above theorem shows
that kerpdimpT qq “ 1. We already know from co-ordinate geometry that the set of

all points

„

x
y



such that 2x` y “ 0 is a line in the plane.



LECTURE 22

Sums of subspaces

Definition 22.1. (Sums of spaces) Let V be a vector space and let tWiuiPI be
a family of subspaces of V (where I is any indexing set). The sum of the subspaces
in this family is defined to be the subspace

ÿ

iPI

Wi “ spanp
ď

iPI

Wiq

of V . If I is a finite set, say I “ t1, . . . , nu, we will write the sum of the subspaces
Wi as W1 `W2 ` ¨ ¨ ¨ `Wn.

The following description of the sum may be more useful:

Lemma 22.2. Let V be a vector space and let tWiuiPI be a family of subspaces
of V . Then

ÿ

iPI

Wi “ t
ÿ

iPI

wi : wi PWi and wi “ 0 for all but finitely many iu.

Note that the condition that wi “ 0 for all but finitely many i is imposed only
to ensure that the expression

ř

iPI wi makes sense. If I happens to be a finite set,
this second condition is not relevant and then we can say that

ř

iPIWi is simply
the collection of all elements of the form

ř

iPI where wi PWi for every i.

Proof. Let us denote the set on the right hand side of the above equation by
W . Thus,

W :“ t
ÿ

iPI

wi : wi PWi and wi “ 0 for all but finitely many iu.

We first claim that W is a subspace of V . Suppose v1 and v2 are elements of W .
Then, for j “ 1, 2, we have

vi “
ÿ

iPI

wij

for some wij P Wi such that wij “ 0 for all but finitely many i. Let a1, a2 P F .
Then,

a1v1 ` a2v2 “
ÿ

iPI

pa1wi1 ` a2wi2q.

We observe that for every i, a1wi1 ` a2wi2 P Wi. Thus, the right hand side of
the above equation clearly represents an element in W . As a1, a2 P F and W were
arbitrary, we see that W is a subspace of V .

Clearly, Wi Ă W for every i P I. Thus,
Ť

iPIWi Ă W . As
ř

iPIWi “

spanp
Ť

iPIWi is the intersection of all the subspaces of W which contain
Ť

iPIWi,
it follows that

ř

iPIWi ĂW .
On the other hand, every element of the form

ř

iPI wi, with wi PWi for all i P I,
is a linear combination of elements in

Ť

iPIWi. Thus, we see that every element of
W is contained in spanp

Ť

iPIWi “
ř

iPIWi. Thus, we see that W “
ř

iPIWi. �

Examples 22.3. We will look at two simple examples, which will illustrate a
crucial issue. In both these examples, we will use the space V “ R3. Let e1, e2, e3
be the standard basis of R3.
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(1) Let S1 “ spanpe1q (i.e. the x-axis) and S2 “ spanpe2, e3q (i.e. the yz-
plane). Then spanpS1YS2q contains spanpe1, e2, e3q “ V and hence must
be equal to V . Thus, S1 ` S2 “ V . Observe that here dimpS1q “ 1,
dimpS2q “ 2 and dimpV q “ 3. So, dimpV q “ dimpS1q ` dimpS2q. Notice
that, S1 X S2 “ t0u.

(2) Let T1 “ spanpe1, e2q (i.e. the xy-plane) and T2 “ spanpe1, e3q (i.e. the
xz-plane). Then, by the same argument as above, we see that T1`T2 “ V .
However, dimpT1q “ 2, dimpT2q “ 2 and dimpV q “ 3. So, dimpV q ą
dimpT1q ` dimpT2q. Here, we observe that T1 X T2 “ spanpe1q, which is a
1-dimensional space.

In order to explain this difference, we formulate a new notion which should
remind you of the notion of linear independence of vectors.

Definition 22.4. Let V be a vector space. Let tWiuiPI be a family of subspaces
of V . Then, we say that the subspaces tWiuiPI are independent if the following
condition holds:

If we have an equality
ř

iPI wi “ 0 where wi PWi for each i P I,
then we must have wi “ 0 for every i P I.

We will now focus on the case of a family consisting of two subspaces W1,W2

contained in a vector space V and examine what the notion of independence means
in that case.

Lemma 22.5. Let V be a vector space. Let W1,W2 be subspaces of V . Let B1

be a basis of W1 and let B2 be a basis of W2. Then spanpB1 YB2q “W1 `W2.

Proof. Any element of W1 `W2 can be written in the form w1 `w2 where
w1 P W1 and w2 P W2. Since B1 is a basis of W1, w1 can be written as a linear
combination of elements of B1. Similarly, w2 can be written as a linear combination
of elements of B2. This shows that w1`w2 can be written as a linear combination
of elements of B1 Y B2. Thus, spanpB1 Y B2q “W1 `W2. �

Remark 22.6. More generally, suppose tWiuiPI is a family of subspaces of V
and Bi is a basis of Wi for every i P I, then spanp

Ť

iPI Biq “
ř

iPIWi. The proof is
similar to that of the special case proved above. (Exercise: Write the proof in the
general case.)

Proposition 22.7. Let V be a vector space. Let W1 and W2 be subspaces.
Then, the following statements are equivalent:

(a) W1 and W2 are independent.
(b) W1 XW2 “ t0u.
(c) Let B1 be a basis of W1 and B2 be a basis of W2. Then B1 X B2 “ H and

B1 Y B2 is a basis for W1 `W2.

If any of these statements is true, then dimpW1q ` dimpW2q “ dimpW1 `W2q.

Proof. We will prove the equivalence of the statements in three steps.
Step 1: (a) implies (b).

We assume that (a) is true. Suppose (b) is not true. Then there exists w P

W1 XW2 such that w ‰ 0. Define w1 “ w and w2 “ ´w. Then w1 P W1 and
w2 PW2. Clearly w1`w2 “ 0. Thus, (a) implies that w1 “ w2 “ 0. Thus, w “ 0,
which contradicts our assumption. This shows that (b) must be true. Thus, we
have shown that (a) implies (b).
Step 2: (b) implies (c).

We assume that (b) is true. By Lemma 22.5, we know that B1 Y B2 spans
W1 `W2. As W1 XW2 “ t0u, we see that B1 X B2 Ă t0u. However, 0 cannot be
the member of any basis. Thus, B1 X B2 “ H.
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Step 3: (c) implies (a).
Suppose that (c) is true. Suppose that we have an equation w1`w2 “ 0 where

w1 P W1 and w2 P W2. Suppose B1 “ tuiuiPI and B2 “ tvjujPJ . Then we have
w1 “

ř

iPI aiui and w2 “
ř

jPJ bjvj where all the ai and bj are in F . Thus, we
have the equation

ÿ

iPI

aiui `
ÿ

jPJ

bjvj “ 0.

Since B1 Y B2 is a basis, we see that ai “ 0 for all i P I and bj “ 0 for all j P J .
Thus w1 “ w2 “ 0. This proves (a). Thus (c) implies (a). �

Remark 22.8. Thus, we have proved that if W1 and W2 are independent, then
dimpW1 `W2q “ dimpW1q ` dimpW2q. In the next lecture, we will prove that the
converse of this statement is also true.

Remark 22.9. Proposition 22.7 can be generalized to an arbitrary family
tWiuiPI . The generalized versions of statements (a) and (c) in the proposition
are obvious. However, the generalization of (b) is a bit more subtle. It is as follows:

For every i P I, Wi X

´

ř

jPIztiuWj

¯

“ t0u.

Thus, for instance, for a family of three subspaces W1,W2,W3, independence
is equivalent to

W1 X pW2 `W3q “W2 X pW1 `W3q “W3 X pW1 `W2q “ t0u.

(Exercise: Write the complete statement of the generalization of Proposition 22.7
and prove it.)





LECTURE 23

Direct sums

Definition 23.1. Let V be a vector space. Let W1,W2 be subspaces of V .
We say that W1,W2 are complementary subspaces (or that they are complements
of each other) if W1 XW2 “ t0u and W1 `W2 “ V .

Proposition 23.2. Let V be a vector space and let W be a subspace of V .
Then, there exists a subspace W 1 of V such that W 1 is a complement of W .

Proof. Choose a basis B of W . Then, B is contained in a basis C of V . Let
W 1 “ spanpCzBq. The set CzB is a subset of C and is hence linearly independent.
Since it spans W 1, we see that it is a basis of W 1. We have B X pCzBq “ H and
BYpCzBq “ C. Thus, by Proposition 22.7, we see that W and W 1 are independent.
As spanpCq “ V , we see that W `W 1 “ V . Thus, W 1 is a complement of W . �

Remark 23.3. Note that W does not have a unique complement. The com-
plement constructed in the above proposition depends on the choice of C. As C can
generally be chosen in many ways (infinitely many ways if F is an infinite field), we
see that W 1 is not unique.

For example, let V “ R2 and let W be a line in R2. Then, any other line of R2

is a complement of W . (Exercise: Do you see why?)

Direct sums:
Let V and W be vector spaces. Then the cartesian product V ˆW has a vector

space structure defined as follows:

– Addition: For v1,v2 P V and w1,w2 P W , we define pv1,w1q ` pv2,w2q

to be pv1 ` v2,w1 `w2q.
– Scalar multiplication: For c P F , v P V and w PW , we define c ¨ pv,wq to

be pcv, cwq.

This vector space is denoted by V ‘W and is called the direct sum of V and W .
(Exercise: Check that the above definitions of addition and scalar multiplication
satisfy really do make V ˆW into a vector space.)

Remark 23.4. Sometimes the direct sum of V and W is also called as the
external direct sum of V and W . This is in order to distinguish it from the “internal
direct sum”, which is defined as follows:

If V is a vector space and W1,W2 are independent subspaces of V , their sum
W1 `W2 is called the internal direct sum of W1 and W2.

Of course, we can also construct the external direct sum W1 ‘W2 of two sub-
spaces. We will see below that if W1 and W2 are independent, then the internal
and external direct sums of W1 and W2 are actually isomorphic.

To understand this vector space better, it will be useful to look at certain
functions. We define p1 : V ‘W Ñ V by p1ppv,wqq “ v and p2 : V ‘W Ñ W
by pppv,wqq “ w. Let s :1: V Ñ V ‘ W be defined by s1pvq “ pv,0q and
s2 : W Ñ V ‘W be defined by and s2pwq “ p0,wq.

Exercise 23.5. With the above notation, prove the following:

(a) Prove that p1, p2, s1 and s2 are linear transformations.
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(b) Prove that p1 ˝ s1 : V Ñ V is the identity transformation on V . Similarly,
show that p2 ˝ s2 : W ÑW is the identity transformation on W .

(c) Prove that s1 and s2 are injective.

We will assume the results of the above exercise. Let rV “ s1pV q and ĂW “

s2pW q. These are subspaces of V ‘W . Explicitly,

rV “ tpv,0q : v P V u Ă V ‘W

and
ĂW “ tp0,wq : w PW u Ă V ‘W .

As s1 and s2 are injective, we see that the linear transformation V Ñ rV , v ÞÑ

pv,0q is actually an isomorphism. Thus, dimprV q “ dimpV q. Similarly the linear

transformation W Ñ ĂW , w ÞÑ p0,wq is an isomorphism. Thus, dimpĂW q “ dimpW q.

First we observe that rV XĂW “ tp0,0u which is the zero subspace of V ‘W .

Thus, rV and ĂW are independent subspaces of V ‘W . Also, any element pv,wq of
V ‘W can be written as

pv,wq “ pv,0q ` p0,wq.

Thus, V ‘W “ rV `ĂW . Thus, rV and ĂW are complementary subspaces. Thus, by
Proposition 22.7, we see that

dimpV ‘W q “ dimprV q ` dimpĂW q “ dimpV q ` dimpW q.

Dimension of the sum of subspaces:

Theorem 23.6. Let V be a vector space and let W1,W2 be subspaces. Then,
we have

dimpW1 `W2q “ dimpW1q ` dimpW2q ´ dimpW1 XW2q.

We will give two proofs of this theorem. The first one is a little abstract and
uses the Rank-Nullity Theorem. The second one follows a more pedestrian approach
and involves a direct algebraic argument involving bases.

Proof 1. We define a function s : W1 ‘W2 Ñ V by sppw1,w2qq “ w1 `w2.
Then, it is easy to see that s is a linear transformation. (Exercise: Prove this.) The
Rank-Nullity Theorem tells us that

dimpW1 ‘W2q “ dimpimpsqq ` dimpkerpsqq.

We know that dimpW1‘W2q “ dimpW1q`dimpW2q. Thus, we see that the theorem
will be proved if we can show that dimpimpSqq “ dimpW1`W2q and dimpkerpsqq “
dimpW1 XW2q.

Observe that

impsq “ tsppw1,w2qq : w1 PW1,w2 PW2u

“ tw1 `w2 : w1 PW1,w2 PW2u

“W1 `W2.

This implies that dimpimpSqq “ dimpW1 `W2q, which was one of the equalities we
wanted to prove.

Now, we observe that

kerpsq “ tpw1,w2q : sppw1,w2qq “ 0, w1 PW1,w2 PW2u

“ tpw1,w2q : w1 `w2 “ 0, w1 PW1,w2 PW2u.

If pw1,w2q P kerpsq, we have w1 `w2 “ 0 and hence w1 “ ´w2. Here, w1 P W1,
but ´w2 PW2. Thus, it follows that w1 PW1 XW2. Thus,

kerpsq “ tpw,´wq : w PW1 XW2u.
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Now, define the function φ : W1 XW2 ÑW1 ‘W2 by φpwq “ pw,´wq. Then,
we see that

impφq “ tφpwq : w PW1 XW2u

“ tpw,´wq : w PW1 XW2u

“ kerpsq.

Also, if φpwq “ p0,0q, then it follows immediately that w “ 0. Thus, φ is injective.
Thus, we see that φ induces an isomorphism of W1 X W2 with impφq “ kerpsq.
Thus, dimpW1 XW2q “ dimpkerpsqq as required. This completes the proof. �

Proof 2. Let B be a basis of W1XW2. This is a linearly independent subset of
W1 and thus there exists a set C1 of W1 such that BYC1 is a basis of W1. Similarly,
there exists a subset C2 of W2 such that B Y C2 is a basis of W2.

Let |B| “ m, |C1| “ n1 and |C2| “ n2. Thus, dimpW1q “ m`n1 and dimpW2q “

m ` n2. We will prove that the set B Y C1 Y C2 is a basis of W1 `W2. This will
show that

dimpW1 `W2q “ m` n1 ` n2 “ dimpW1q ` dimpW2q ´ dimpW1 XW2q

as required.
As W1YW2 spans W1`W2, and since BYCi spans Wi for i “ 1, 2, we see that

BY C1Y C2 spans W1`W2. Thus, it remains to be proved that the set BY C1Y C2
is linearly independent.

Suppose B “ tu1, . . . ,umu, C1 “ tv1, . . . ,vn1
u and C2 “ tw1, . . . ,wn2

u. If the
set B Y C1 Y C2 is linearly dependent, there exists a non-trivial linear relation

m
ÿ

i“1

aiui `
n1
ÿ

j“1

bjvj `
n2
ÿ

k“1

ckwk “ 0

where all the ai, bj and ck are in F . Thus,

n2
ÿ

k“1

ckwk “ ´

¨

˝

m
ÿ

i“1

aiui `
n1
ÿ

j“1

bjvj

˛

‚.

The right-hand side of this equation is in W1 and the left-hand side is in W2. Thus,
řn2

i“1 ckwk is in W1 XW2. Thus, as B is a basis of W1 XW2, there exist elements
d1, . . . , dm such that

n2
ÿ

k“1

ckwk “

m
ÿ

i“1

diui.

As the set BY C2 is linearly independent, it follows that ck “ 0 for all k and di “ 0
for all i. Thus,

m
ÿ

i“1

aiui `
n1
ÿ

j“1

bjvj “ 0.

As B Y C1 is a linearly independent set, we have ai “ 0 for all i and bj “ 0 for all
j. This shows that the linear relation we started with was actually trivial, which is
a contradiction.

This shows that the set B Y C1 Y C2 is linearly independent, as required. �





LECTURE 24

Eigenvalues and eigenvectors, Diagonalization

Let V be a finite dimensional vector space and let B be a basis of V . Let
T : V Ñ V be a linear transformation. Then we saw in Chapter 19 that we can
associate a matrix MB

B pT q to this transformation. If C is any other basis, we know
that

MC
C pT q “MCpBq ¨MB

B pT q ¨MBpCq “MBpCq´1 ¨MB
B pT q ¨MBpCq.

Here, we know that MBpCq is an invertible matrix.

Definition 24.1. Let n be a positive integer. If P is an nˆn invertible matrix,
the function MnˆnpF q ÑMnˆnpF q defined by A ÞÑ P´1AP is called as conjugation
by P .

Definition 24.2. Let n be a positive integer. Let A and B be two n ˆ n
matrices. We say that A is similar or conjugate to B if there exists an invertible
matrix P such that A “ PBP´1.

This relation has some nice properties:

(a) Reflexive: Every matrix A is conjugate to itself since A “ I´1
n AIn.

(b) Symmetry :If A is obtained from B by conjugation by an invertible matrix
P , i.e. if A “ P´1BP , then B “ PAP´1. Thus, B is obtained from A
by conjugation by C´1 (which is also an invertible matrix). Thus, we see
that if A is conjugate to B, then B is conjugate to A.

(c) Transitivity : If A is conjugate to B and B is conjugate to C then A is
conjugate to C. Indeed, if A “ P´1BP and B “ Q´1CQ, then A “

P´1Q´1CQP “ pQP q´1CpQP q.

Any “relation” with these properties is said to be an equivalence relation.

Remark 24.3. We will not discuss relations and equivalence relations in detail
in this course. However, we observe that this notion allows us to partition the set
MnˆnpF q into a family of mutually disjoint subsets. Indeed, for every matrix A,
let us denote by clpAq the set of all nˆ n matrices which are conjugate to A. It is
called the conjugacy class of A. It can be proved by using the above observations
that for any two matrices A and B, the sets clpAq and clpBq are either disjoint
(i.e. their intersection is the empty set) or they are actually equal. Indeed, clpAq
and clpBq have a common element if and only if A and B are conjugate to each
other (use transitivity to prove this), and in this case clpAq “ clpBq. Thus, any two
distinct conjugacy classes are disjoint. Clearly, any matrix A is contained in some
conjugacy class – it is actually contained in the conjugacy class clpAq. Thus, the
union of all the conjugacy classes is MnˆnpF q. This shows that all the conjugacy
classes together give us a partition of MnˆnpF q into disjoint sets.

Given any linear transformation from V to itself, its matrix depends on the
choice of the basis of V that we are using. So, is it possible to choose a basis which
makes the matrix of T particularly simple? This is the question we will try to
answer. (We will only give a partial answer to this question in this course.)
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Eigenvalues:

Definition 24.4. Let V be a vector space and let T : V Ñ V be a linear
transformation.

(1) A non-zero element v P V is said to be an eigenvector for T if there exists
an element λ P F such that T pvq “ λv. The element λ is said to be the
eigenvalue associated to the eigenvector v.

(2) An element of F is said to be an eigenvalue of T if it is the eigenvalue
corresponding to some eigenvector of T .

Convention 24.5. Let A P MnˆnpF q. Then the eigenvalues and eigenvectors
of the linear transformation x ÞÑ Ax will also be referred to as eigenvalues and
eigenvectors of A.

Remark 24.6. Observe that the eigenvector v is necessarily non-zero. However,
there is no such restriction on λ. Indeed, if kerpT q ‰ t0u, then every non-zero
element of kerpT q is an eigenvector of T associated to the eigenvalue 0. Thus, 0 is
an eigenvalue of T if and only if T is a non-zero kernel, i.e. if and only if T is not
injective.

Remark 24.7. Observe that if v is an eigenvector of T , the line (i.e. 1-
dimensional subspace) spanpvq is mapped onto itself by T . Conversely, if v is
a non-zero vector such that the spanpvq is mapped into itself by T , then v is an
eigenvector of T .

So, if we are given a linear transformation T : V Ñ V , how should we find its
eigenvectors? Actually, it is much easier to find the eigenvalues of T first.

Proposition 24.8. Let n be a positive integer. Let V be an n-dimensional
vector space and let λ P F . Let A “ MB

B pT q for any basis B of V . An element
λ P F is an eigenvalue of T if and only if detpλIn ´Aq “ 0.

Proof. Suppose detpλIn ´ Aq “ 0. Then, the matrix B “ λIn ´ A is not
invertible. In particular, the row reduced echelon form of B has some columns
which do not contain a pivot. Thus, there exists a non-zero element x P Fn such
that Bx “ 0. Thus Ax “ λx. Let v “ Bx. Thus, MBpvq “ x. Note that v ‰ 0
since x ‰ 0. We know from Lemma 19.1 that

T pvq “ B ¨MB
B pT q ¨MBpvq “ B ¨A ¨ x “ B ¨ λx “ λ ¨ B ¨ x “ λv.

Thus, we see that λ is an eigenvalue corresponding to the eigenvector v¿
The converse is essentially proved by reversing the above argument, but we will

write the proof in detail. Suppose that λ is an eigenvalue corresponding to the
eigenvector v. Let x “ MBpvq. Observe that x ‰ 0 as v ‰ 0. By assumption,
T pvq “ λv. Once again, recall that by Lemma 19, we know that

T pvq “ B ¨MB
B pT q ¨MBpvq.

Thus,

B ¨MB
B pT q ¨MBpvq “ λv “ λ ¨ B ¨ x “ B ¨ pλxq.

Thus (by Remark 18.13, we see that MB
B pT q ¨MBpvq “ λx, i.e. Ax “ λx. Thus

pλIn´Aq¨x “ 0. This shows that the matrix pλIn´Aq is not invertible. (Otherwise,
we could multiply the equation pλIn ´ Aq ¨ x “ 0 on the left by its inverse of this
matrix, to get x “ 0, which we know is not true.) Thus detpλIn ´Aq “ 0. �

This leads us to define the following:

Definition 24.9. Let n be a positive integer. Let A PMnˆnpF q. Let X denote
a variable. The characteristic polynomial of A is defined to be the polynomial
detpXIn ´Aq.
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If A is a matrix, and λ is a root of the characteristic polynomial of A, then the
matrix λIn ´ A is not invertible. Thus, there exists an element y ‰ 0 of Fn such
that Ay “ λy. Thus y is an eigenvector of the linear transformation T : Fn Ñ Fn

defined by T pxq “ Ax.
It should be clear that we can use this method to find the eigenvalues of a

linear transformation T : V Ñ V for any abstract finite dimensional vector space
V , not just Fn. To begin with, we simply fix the basis B, which establishes an
isomorphism of V with Fn (where n “ dimpV q) and then linear transformation
T can be expressed as multiplication by an n ˆ n matrix A. We compute the
characteristic polynomial of A and find all its roots. By Proposition 24.8, the roots
of this polynomial are exactly the eigenvalues of T .

What about the eigenvectors of T? Suppose A is as above and x is an eigen-
vector of the linear transformation x ÞÑ Ax and the corresponding eigenvalue is λ.
Then, we see from the proof of Proposition 24.8 that the element v “ B ¨ x is an
eigenvector of T and the corresponding eigenvalue is λ. Also, all eigenvectors of T
can be obtained in this manner.

Lemma 24.10. Let n be a positive integer. Let A,B PMnˆnpF q be two conjugate
matrices. Then A and B have the same characteristic polynomial.

Proof. By assumption, there exists an invertible matrix P such that A “

P´1BP . Then we see that

detpXIn ´Aq “ detpXIn ´ P
´1BP q

“ detpP´1 ¨ pXIn ´Bq ¨ P q

“ detpP´1qdetpXIn ´BqdetpP q

“ detpXIn ´Bq.

This proves the result. �

Lemma 24.11. Let V be a finite dimensional vector space. Let B be a basis of
V . Then, the characteristic polynomial of the matrix MB

B pT q does not depend on
the choice of B.

Proof. This follows from the previous lemma since if C is any other basis, the
matrices MB

B pT q and MC
C pT q are conjugates. �

Definition 24.12. Let V be a finite dimensional vector space. Let T : V Ñ V
be a linear transformation. The characteristic polynomial of T is defined to be the
characteristic polynomial of the matrix MB

B pT q for any basis B of V .

Example 24.13. Consider the linear transformation T : R2 Ñ R2 given by

T pxq “ Ax where A “

„

2 3
1 ´2



. Let us find all the eigenvectors and eigenvalues of

T .
The characteristic polynomial of A is

detpXI2 ´Aq “ det

„

X ´ 2 ´3
´1 X ` 2



“ pX ´ 2qpX ` 2q ´ p´1qp´3q “ X2 ´ 7.

Thus, the eigenvalues of T are
?

7 and ´
?

7.
Let us now find the eigenvectors of A. First we work with the eigenvalue

?
7.

To find all the corresponding eigenvectors, we wish to solve the equation Ax “
?

7x.
This can be written as

«?
7´ 2 ´3

´1
?

7` 2

ff

„

x1
x2



“

„

0
0



.
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As usual, we denote this by an augmented matrix.
«?

7´ 2 ´3 0

´1
?

7` 2 0

ff

We perform the row operation p 1?
7´2
qR1.

«

1 ´3?
7´2

0

´1
?

7` 2 0

ff

Perform the operation R2 ` R1. (I have omitted the computations required to
simplify the expression in the second row.)

«

1 ´3?
7´2

0

0 0 0

ff

This gives us the eigenvector

«

3?
7´2

1

ff

.

A similar computation gives us the eigenvector

«

3
´
?
7´2

1

ff

for the eigenvalue

´
?

7. (Check this!)

Example 24.14. Consider the linear transformation T : R2 Ñ R2 given by

T pxq “ Ax where A “

„

0 ´1
1 0



. Let us find all the eigenvectors and eigenvalues

of T . You may check that this is just the rotation around the origin through π{2
radians (i.e. 90 degrees) in the anti-clockwise sense. We know that if v is an
eigenvector, the line spanpvq will be mapped into itself by T . But we know that
the rotation through π{2 radians cannot map any line into itself – every line gets
rotated through π{2 radians around the origin. So we do not expect to find any
eigenvectors for this linear transformation. We will verify this algebraically.

The characteristic polynomial of A is

detpXI2 ´Aq “ det

„

X 1
´1 X



“ X2 ` 1.

This polynomial has no root in R and so T has no eigenvectors.

Thus, we see that a linear transformation (or a matrix) can fail to have eigen-
values simply because the characteristic polynomial does not have any roots in the
field F . This problem can be fixed by working over a field that is large enough so
that all polynomials in F rXs have roots. A field F is said to be algebraically closed
if any non-constant polynomial in F rXs has a root. It can be proved that every field
is contained in a bigger field which is algebraically closed. Over an algebraically
closed field, every square matrix will have at least one eigenvalue. We will not
discuss this matter any further in this course.
Diagonalization:

Definition 24.15. Let n be a positive integer. A matrix A PMnˆnpF q is said
to be a diagonal matrix if all of its non-zero entries are on the diagonal.

Note that for a matrix to be a diagonal matrix, the only requirement is that all
the entries that are not on the diagonal should be zero. It is perfectly fine if there
are some zeros on the diagonal as well.

Lemma 24.16. Let n be a positive integer. Let A P MnˆnpF q. Let e1, . . . , en
denote the standard basis of Fn. Then A is a diagonal matrix if and only if ei is
an eigenvector of the linear transformation x ÞÑ Ax for every i.
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Proof. Recall that the column matrix Aei is just the i-th column of A.
If A is a diagonal matrix, Aei can only have a non-zero term in the pi, 1q-

position and is hence a scalar multiple of ei. This shows that ei is an eigenvector
of the transformation x ÞÑ Ax.

Conversely, suppose that ei is an eigenvector for the transformation x ÞÑ Ax.
Thus, there exists an element λi P F such that Aei “ λiei. As this is the i-th
column of A, we see that the i-th column of A has λi in the i-th row, and all other
terms in this column are equal to 0. This shows that A is a diagonal matrix. �

Definition 24.17. Let n be a positive integer. An n ˆ n matrix is said to be
diagonalizable if it is similar to a diagonal matrix.

Definition 24.18. Let V be a finite dimensional vector space. Let T : V Ñ V
be a linear transformation. We say that T is diagonalizable if there exists a basis
B such that MB

B pT q is diagonal.

Lemma 24.19. Let V be a finite dimensional vector space. Let T : V Ñ V be a
linear transformation. Let B be an ordered basis of V . Then MB

B pT q is a diagonal
matrix if and only if every vector in B is an eigenvector of T .

Proof. Let n “ dimpV q and let e1, . . . , en denote the standard basis of Fn.
Recall (see Theorem 18.12) that we have an isomorphism between φ : V Ñ Fn given
by φpvq “MBpvq and its inverse ψ is given by ψpxq “ B ¨x. Let B “

“

v1 ¨ ¨ ¨ vn
‰

.
Then, φpviq “ ei and ψpeiq “ B ¨ ei.

Suppose that MB
B pT q is a diagonal matrix. Then, for every i, ei is an eigenvector

of the transformation x ÞÑ MB
B pT qx. Thus, for every i, there exists λi P F such

that MB
B pT qei “ λiei. We know that

MBpT pvqq “MB
B pT q ¨MBpvq

for every v P V . Using this for v “ vi, we get

MBpT pviqq “MB
B pT q ¨ ei “ λiei.

Thus,
T pviq “ B ¨MBpT pviqq “ B ¨ pλeiq “ λi ¨ B ¨ ei “ λivi.

This shows that vi is an eigenvector of T .
The converse is left as an exercise. �

Lemma 24.20. Let V be a finite dimensional vector space and let B be an ordered
basis of V . Let T : V Ñ V be a linear transformation. Then T is diagonalizable if
and only if the matrix MB

B pT q is diagonalizable.

Proof. Suppose MB
B pT q is diagonalizable. Thus, there exists an invertible

matrix P such that the matrix P´1MB
B pT q is diagonal. Let C “ B ¨ P . By Exercise

20.3, C is an ordered basis of V . Also MBpCq “ P .
We also know that

MC
C pT q “MBpCq´1 ¨MB

B pT q ¨MBpCq “ P´1 ¨MB
B pT q ¨ P .

By assumption, this is a diagonal matrix. Thus, T is diagonalizable.
The converse is left as an exercise. �

By Lemma 24.19, we see that to diagonalize a linear transformation T : V Ñ V ,
we need to find a basis of V consisting eigenvectors of V . Such a basis will not
always exist. The transformation is diagonalizable if and only if we can find a basis
consisting of eigenvectors.

Proposition 24.21. Let V be a vector space and let T : V Ñ V be a linear
transformation. For any λ P F , we define

Vλ “ tv P V : T pvq “ λvu.



106 24. EIGENVALUES AND EIGENVECTORS, DIAGONALIZATION

(1) For any λ P F , the set Vλ is a subspace of V .
(2) For λ P F , Vλ ‰ t0u if and only if λ is an eigenvalue of T .
(3) Let λ1, . . . , λk distinct eigenvalues of T . Then the subspaces Vλi are inde-

pendent.

Proof. We first prove (a). Fix λ P F and define S : V Ñ V by Spvq “
T pvq ´ λv. Then, S is a linear transformation. (Do you see why?) Then Vλ is just
the kernel of S and is hence a subspace of V . This completes the proof of (a).

Part (b) is an immediate consequence of the definition of an eigenvector.
We prove part (c) by induction on k. When k “ 1, the claim is trivially true.

Now suppose that the result is known to be true for k ď r. We will verify the result
for k “ r ` 1.

Let λ1, . . . , λr`1 distinct eigenvalues of T . Suppose we have an equation

v1 ` ¨ ¨ ¨ ` vr`1 “ 0 (24.1)

where vi P Vλi for every i. Applying T to both sides, we get

λ1v1 ` ¨ ¨ ¨ ` λr`1vr`1 “ 0. (24.2)

Subtracting λr`1 times equation (24.1) from equation (24.2), we get

pλ1 ´ λr`1qv1 ` . . .` pλr ´ λr`1qvr “ 0.

We set wi “ pλi´λr`1qvi. Then, wi P Vλi
for i “ 1, . . . , r and we have the equation

w1 ` ¨ ¨ ¨ `wr “ 0.

By the induction hypothesis, we have wi “ 0 for i “ 1, . . . , r. Thus, pλi´λr`1qvi “
0 for i “ 1, . . . , r. But then, for every such i, we have λi ´ λr`1 ‰ 0. Thus, we see
that vi “ 0 for i “ 1, . . . , r. Then, equation (24.1) tells us that vr`1 is equal to 0
as well. Thus, vi “ 0 for i “ 1, . . . , r ` 1. This proves (c). �

We will need to use the following fact about polynomials. We will not prove it
in this course:

Fact 24.22. A non-constant polynomial in F rXs of degree d has at most d
distinct roots.

Now, let V be a finite dimensional vector space and let T : V Ñ V be a linear
transformation. Let λ1, . . . , λk be all the distinct eigenvalues of T . (Note that they
are finite in number because of Fact 24.22.) By Proposition 24.21, we see that the
spaces Vλ1

, . . . , Vλk
are indepedent. Thus, by Remark 22.9, we see that

dimp
k
ÿ

i“1

Vλi
q “

k
ÿ

i“1

dimpVλi
q.

In particular, we see that

k
ÿ

i“1

dimpVλi
q ď dimpV q.

Suppose B is a basis of V consisting of eigenvectors of T . Each element of B
lies in some Vλi

. For every i, let Bi “ B X Vλi
and let Wi “ spanpBiq. For i ‰ j,

we see that

Bi X Bj Ă Vλi
X Vλj

“ t0u.

As every element of B is non-zero, we conclude that Bi X Bj “ H for i ‰ j. Thus

B is a disjoint union of the Bi and hence
řk
i“1 |Bi| “ |B| “ dimpV q.
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For every i, Wi is a subspace of Vi and we have Vλi
“Wi if and only if Bi is a

basis of Vi. So,

dimpV q “ |B|

“

k
ÿ

i“1

|Bi|

“

k
ÿ

i“1

dimpWiq

ď

k
ÿ

i“1

dimpVλiq

ď dimpV q.

This shows that equality holds at each stage in this sequence of inequalities. Thus
Bi is a basis of Vλi

for every i.

Algorithm for diagonalizing a linear transformation:
The above discussion gives us an algorithm for checking whether T is diagonal-

izable and, if it is so, to find a basis which actually diagonalizes it:

Step 1 : Fix an ordered basis B of V . Compute the matrix MB
B pT q and then

compute its eigenvalues. These are the eigenvalues of T . Let us denote
them by λ1, . . . , λk.

Step 2 : For i “ 1, . . . , k, we define Vλi
“ kerpλi ¨ IdV ´ T q where IdV is the

identity transformation on V (defined by IdV pvq “ v).

Step 3 : If
řk
i“1 dimpVλi

q ă dimpV q, then T is not diagonalizable.

Step 4 : If
řk
i“1 dimpVλi

q “ dimpV q, find a basis Bi of Vλi
. Then B “

Ťk
i“1 Bi is

a basis of V consisting of eigenvectors of T .

Algorithm for diagonalizing a matrix:
Suppose we are given an nˆ n matrix A. We wish to find whether this matrix

is diagonalizable. We apply the above algorithm to the transformation x ÞÑ Ax and
obtain the following:

Step 1 : Compute the characteristic polynomial of A and then compute all its
roots. These are the eigenvalues of A. Let us denote them by λ1, . . . , λk.

Step 2 : For i “ 1, . . . , k, we find the set Vi of all x such that pλiIn ´ Aqx “ 0.
This is done by the row reduction algorithm. The set of all such x is a
subspace of Fn. Let di be the dimension Vi. (One can check that di is just
equal to n minus the number of pivots in the row-reduced echelon form of
the matrix λiIn ´A.)

Step 3 : If
řk
i“1 di ă n, then A is not diagonalizable.

Step 4 : If
řk
i“1 dimpViq “ n, find a basis Bi of Vi. Then B “

Ťk
i“1 Bi is a basis

of Fn. Let E denote the standard basis of Fn. Then we set P “MEpBq.
(This matrix is very easy to write down if you actually have the elements
of B. The elements of B are nˆ1-matrices. Simply place them side-by-side
to obtain an n ˆ n-matrix. This is precisely the matrix MEpBq.) Then
P´1AP is a diagonal matrix.
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