
MTH 101 - Symmetry

Assignment 8

Corrections to Assignment 7:

1. Let G be a group. Then prove that the following are normal subgroups of G.

ii. [GG] =< aba
−1

b
−1 : a, b ∈ G >

2. Let N be a normal subgroup of a group G. Then prove the following.

i. If K is subgroup of N such that K a normal subgroup of G, then K is normal in G.

Notes: Let V be a vector space over the reals R.

• Given a set of vectors {v1, v2, · · · , vk} in V , a vector v ∈ V such that

v = c1v1 + c2v2 + · · · + ckvk,

with c1, · · · , ck ∈ R is said to be a linear combination of the vectors {v1, · · · , vk}.

For example, (a, b) = a(1, 0) + b(0, 1) ∈ R2 is a linear combination of the vectors (1, 0), (0, 1).

• Given a set of vectors X = {v1, · · · , vk} in V |R,

SpanR(X) = {c1v1 + c2v2 + · · · + ckvk : c1, c2, · · · , ck ∈ R}.

• A set of vectors {v1, v2, · · · , vk} in V |R is said to be linearly dependent if there exists scalars c1, · · · , ck ∈ R

not all 0, such that

c1v1 + c2v2 + · · · + ckvk = 0.

For example X = {(1, 0,−1), (0, 1, 1), (1, 2, 1)} is a linearly dependent set. Observe that

c1(1, 0,−1) + c2(0, 1, 1) + c3(1, 2, 1) = (0, 0, 0)

whenever ,

c1 + c3 = 0, c2 + 2c3 = 0,−c1 + c2 + c3 = 0. (1)

Since the the system of equations (1) has a non-zero solution therefore X is linearly dependent.

• A set of vectors X = {v1, v2, · · · , vk} in V |R is said to be linearly independent if X is not linearly dependent.

In other words, {v1, v2, · · · , vk} is linearly independent if

c1v1 + c2v2 + · · · + ckvk = 0,

implies c1 = c2 = · · · = ck = 0. Thus the set {(1, 0, 1), (0, 1, 1), (1, 1, 1)} is linearly independent in R3, since

(0,0,0) is the only solution for the system of equations

c1 + c3 = 0, c2 + c3 = 0, c1 + c2 + c3 = 0, (2)

where the equations (2) that are obtained by considering the equation c1(1, 0, 1)+ c2(0, 1, 1)+ c3(1, 1, 1) =

(0, 0, 0).

• A subset X of a vector space V |R is said to be a basis of V over R if

i. SpanR(X) = V .

ii. X is a linearly independent subset of V |R.

1. Is the vector (3,−1, 0,−1) in the subspace ofR4 spanned by the vectors (2,−1, 3, 2), (−1, 1, 1,−3), and (1, 1, 9,−5).

2. Prove that the only sunspaces of R1 are R1 and the zero subspace.



3. Determine which of the following set of vectors in R3 are subspaces of R3.

i. W = {(a1, a2, a3) ∈ R3 : a1 ≥ 0}.

ii. W = {(a1, a2, a3) ∈ R3 : a1 + a2 = a3}.

iii. W = {(a1, a2, a3) ∈ R3 : a
2
1
= a2}.

iv. W = {(a1, a2, a3) ∈ R3 : a1 = a2}.

v. W = {(a1, a2, a3) ∈ R3 : a1a2 = 0}.

vi. W = {(a1, a2, a3) ∈ R3 : a1 ∈ Q}, where Q denotes the set of rational numbers.

4. Determine which of the following set of matrices in V = M2(R) are subspaces of V .

i. W = {A ∈ M2(R) : A is invertible}.

ii. W = {

(

a b

c d

)

: a + d = b + c}.

iii. W = {

(

a b

c d

)

: a + c = 0}.

iv. W = {A ∈ M2(R) : AB = BA for a fixed B ∈ M2(R)}.

v. W = {A ∈ M2(R) : A
2
= A}.

5. Determine which of the following subsets X of the vector spaces V |R forms a basis of V |R.

i. V = R4, X = {(1, 2, 0, 1), (2, 1, 0,−1), (1, 1, 0, 0), (1, 0, 1,−1)}

ii. V = R3, X = {(1, 0,−1), (1, 2, 1), (0,−3, 2)}

iii. V = M2(R), X = {

(

1 1

2 4

)

,

(

2 −1

−5 2

)

,

(

1 −1

−4 0

)

,

(

2 1

1 6

)

}

iv. V = M2(R), X = {

(

1 1

2 4

)

,

(

2 −1

−5 2

)

,

(

1 −1

−4 0

)

,

(

2 1

1 6

)

,

(

2 1

1 5

)

}.

6. Show that X = {(2, 3), (1,−1)} and X
′
= {(1, 0), (0, 1)} form two bases of R2. Express the vectors (1, 0) and (0, 1)

as a linear combination of the vectors in X.

7. Find three vectors in R3 which are linearly dependent and are such that any two of them are linearly independent.
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