MTH 101 - Symmetry

Assignment 5

Group Theory

1. For a positive interger *n*, let $I_n = \{0, 1, 2, \dots, n-1\}$. Define a binary operation, $\bigoplus_n = addition \ modulo \ n \ on \ I_n$ as follows:

$$x \oplus_n y = \begin{cases} x + y & \text{if } 0 \le x + y < n, \\ x + y - n & \text{if } x + y \ge n, \end{cases}$$

- (a) Prove that (I_n, \oplus_n) is a group. Denote this group by \mathbb{Z}_n . Show that \mathbb{Z}_n is a cyclic group.
- (b) If *m* divides *n*, show that \mathbb{Z}_n contains a subgroup of order *m*. Does \mathbb{Z}_n contain more than one subgroup of order *m*.
- (c) Find all the subgroups of each of the groups \mathbb{Z}_4 , \mathbb{Z}_7 , \mathbb{Z}_{12} .
- (d) Let *H* be the subgroup of \mathbb{Z}_{12} generated by the element 8. Determine the sets *xH* for $x \in \mathbb{Z}_{12}$.
- (e) Make a list of those elements of Z₁₂ which generate Z₁₂. Answer the same question for Z₅ and for Z₉.
- 2. Let D_4 be the group of bijections of the set of vertices of a square to itself. Let *H* be a proper subgroup of D_4 of order 2. Determine the sets (1234)*H* and *H*(1234).
- 3. Let G be a group of prime order. Prove that G is cyclic.
- 4. Let *x* and *g* be two elements of a group *G*. Show that the elements *x* and gxg^{-1} have the same order. Now prove that for all $x, y \in G$, order of *xy* is equal to order of *yx*.
- 5. Define an operation \circ_n = multiplication modulo n on the set $I_n^{\times} = \{1, 2, \dots, n-1\}$ by:

$$x \circ_n y = \begin{cases} xy & \text{if } 0 \le xy < n, \\ xy - n & \text{if } xy \ge n, \end{cases}$$

Can (I_n^{\times}, \circ_n) be a group ?

(a) Which of the following sets form a group under multiplication modulo 14

$$\{1,3,5\}, \{1,3,5,7\}$$

 $\{1,7,13\}, \{1,9,11,13\}.$

(b) Verify that each of the sets

$$\{1, 3, 7, 9, 13, 17, 19\},\$$

 $\{1, 3, 7, 9\},\$
 $\{1, 9, 13, 17\}$

forms a group under multiplication modulo 20.

(c) Let $U_n = \{x \in I_n^{\times} : g.c.d(x, n) = 1\}$. Prove that (U_n, \circ_n) is a group. Work out the multiplication table for (U_{15}, \circ_{15}) and find the order of each element in (U_{15}, \circ_{15}) .

Matrices

- 1. Let $M_n(\mathbb{R})$ be the set of all $n \times n$ matrices with entries from \mathbb{R} . Let $C_{cr}^{\mathbf{r}} : M_n(\mathbb{R}) \to M_n(\mathbb{R})$ be a function that scales the \mathbf{r}^{th} column vector of the matrix by c and maps the other column vectors to themselves. Then given a matrix $A \in M_n(\mathbb{R})$, determine the matrix $C_{cr}^{\mathbf{r}}(A)$. Check that $C_{cr}^{\mathbf{r}}(A) = A C_{cr}^{\mathbf{r}}(I_n)$.
- 2. Let $C_{\mathbf{k}+c\mathbf{r}}^{\mathbf{k}}: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ be the function that replaces the \mathbf{k}^{th} column vector of the matrix with the \mathbf{k}^{th} column vector of the matrix plus *c* times the \mathbf{r}^{th} column vector of the matrix and maps the other column vectors to themselves. Then given a matrix $A \in M_n(\mathbb{R})$, determine the matrix $C_{\mathbf{k}+c\mathbf{r}}^{\mathbf{k}}(A)$ and show that $C_{\mathbf{k}+c\mathbf{r}}^{\mathbf{k}}(A) = AC_{\mathbf{k}+c\mathbf{r}}^{\mathbf{k}}(I_n)$.
- 3. Let $C_s^{\mathbf{r}} : M_n(\mathbb{R}) \to M_n(\mathbb{R})$ be the function that interchanges the \mathbf{r}^{th} column vector of the matrix with the \mathbf{s}^{th} column vector of the matrix and maps the other columns vectors to themselves. Then given a matrix $A \in M_n(\mathbb{R})$, determine the matrix $C_s^{\mathbf{r}}(A)$ and show that $C_s^{\mathbf{r}}(A) = A C_s^{\mathbf{r}}(I_n)$.
- 4. Let $D = (d_{ij})$ be an $n \times n$ diagonal matrix. Let A be a $n \times m$ matrix. Compute AD. Show that D can be written as the product of the matrices $C_{cr}^{\mathbf{r}}(I_n)$ with $c \in \mathbb{R}$ and $1 \le r \le n$.

5. Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \\ 3 & 5 & 8 \end{pmatrix}$ Using the operations $C_{cr}^{\mathbf{r}}$, $C_{s}^{\mathbf{r}}$ and $C_{\mathbf{k}+c\mathbf{r}}^{\mathbf{k}}$, prove that A is not invertible.

Note: To determine an $m \times n$ matrix $A = (a_{ij})$, one has to explicitly determine the entries a_{ij} .