MTH 101 - Symmetry

Assignment 11 & Notes

Recall: Let $B_V = \{v_1, \dots, v_n\}$ be an ordered basis of $V|_{\mathbb{R}}$, $B_W = \{w_1, \dots, w_k\}$ be an ordered basis of $W|_{\mathbb{R}}$ and let $T: V \to W$ be a linear transformation. If for $v_j \in B_V$,

$$T(v_{i}) = a_{1i}w_{1} + a_{2i}w_{2} + \dots + a_{ki}w_{k},$$

then the matrix of T relative to the ordered basis $[B_V : B_W]$, is written as follows:

$$T_{[B_V:B_W]} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \end{pmatrix}$$

Notice that the j^{th} column of the matrix $T_{[B_V,B_W]}$ is a column representation of $T(v_j)$ with respect to the ordered

basis B_W of W and for $v = \sum_{i=1}^n c_i v_i \in V$ with $[v]_{B_V} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$,

$$[Tv]_{B_W} = T_{[B_V:B_W]}.[v]_{B_V}$$

where $T_{[B_V:B_W]}[v]_{B_V}$ denotes the multiplication of the $k \times n$ matrix $T_{[B_V:B_W]}$, with the $k \times 1$ column matrix $[v]_{B_V}$.

• If $B'_V = \{v'_1, v'_2, \dots, v'_n\}$ is another ordered basis of V, then the matrix of T relative to the ordered basis $[B'_V : B_W]$ would be such that the j^{th} column of $T_{[B'_V, B_W]}$ is equal to the column vector $[T(v'_j)]_{B_W}$. But by the above discussion,

$$[T(v'_{i})]_{B_{W}} = T_{[B_{V}:B_{W}]} \cdot [v'_{i}]_{B_{V}}.$$

Hence if $[c^*_{[B_V:B_V]}]$ is the matrix whose j^{th} column is given by $[\nu'_j]_{B_V}$, then

$$\mathbf{T}_{[\mathbf{B}_{\mathbf{v}}',\mathbf{B}_{\mathbf{W}}]} = \mathbf{T}_{[\mathbf{B}_{\mathbf{v}}:\mathbf{B}_{\mathbf{W}}]} \cdot \mathbf{c}_{[\mathbf{B}_{\mathbf{v}}:\mathbf{B}_{\mathbf{v}}']}.$$

(Note that $c_{[B_V:B'_V]}$ is the change of basis matrix relative to $[B_V:B'_V]$ that was mentioned in Assignment 10.)

• If $B'_W = \{w'_1, w'_2, \dots, w'_k\}$ is another ordered basis for W, then the j^{th} column of the matrix $c_{[B_W, B'_W]}$ is given by the column vector $[w'_j]_{B_W}$ and the j^{th} column of the matrix $c_{[B'_W, B_W]}$ is given by the column vector $[w_j]_{B'_W}$. Thus if

$$[Tv_j]_{B_W} = a_{1j}w_1 + a_{2j}w_2 + \dots + a_{kj}w_k,$$

then

$$[Tv_j]_{B'_W} = a_{1j}[w_1]_{B'_W} + a_{2j}[w_2]_{B'_W} + \dots + a_{kj}[w_k]_{B'_W}.$$

Thus if

$$[Tv_{j}]_{B_{W}} = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{kj} \end{pmatrix}, \quad c_{[B'_{W}, B_{W}]} = \left([w_{1}]_{B'_{W}} [w_{2}]_{B'_{W}} \cdots [w_{k}]_{B'_{W}} \right),$$

then

$$[Tv_{j}]_{B'_{W}} = \left([w_{1}]_{B'_{W}} [w_{2}]_{B'_{W}} \cdots [w_{k}]_{B'_{W}} \right) \cdot \left(\begin{array}{c} a_{1j} \\ a_{2j} \\ \vdots \\ a_{kj} \end{array} \right) = c_{[B'_{W}, B_{W}]} \cdot [Tv_{j}]_{B_{W}}.$$

Hence,

 $T_{[B_V,B'_W]} = c_{[B'_W,B_W]}.T_{[B_V,B_W]}.$

Recall: For a linear transformation $T: V \to W$,

i. The **null space of** T, denoted by N_T or N(T) is given as follows:

$$N(T) = \{ v \in V : Tv = 0 \}.$$

(Check that N_T is a subspace of V.) The **nullity** of T is defined as the **dimensional of** N_T .

ii. The **range of** *T* is defined as follows:

Range(
$$T$$
) = { $w \in W : Tv = w$, for some $v \in V$ }

(Check that $\operatorname{Range}(T)$ is a subspace of W.) The rank of T is defined as the dimensional of $\operatorname{Range}(T)$.

Thm: (**Rank-Nullity Theorem**): For a linear transformation $T: V \rightarrow W$,

dimension_{\mathbb{R}} V = Rank T + Nullity of T.

1. If

$$\begin{array}{ll} v_1 = (1,-1) & w_1 = (1,0) \\ v_2 = (2,-1) & w_2 = (0,1) \\ v_3 = (-3,2) & w_3 = (1,1), \end{array}$$

is there a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that $T(v_i) = w_i$ for i = 1, 2, 3?

- 2. Describe explicitly the linear transformation T from \mathbb{R}^2 to \mathbb{R}^2 such that T(1,0) = (a,b) and T(0,1) = (c,d).
- 3. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map defined by

$$T(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3, 2x_1 + x_2, -x_1 - 2x_2 + 2x_3)$$

- a. What are the conditions on a vector $(a, b, c) \in \mathbb{R}^3$ such that (a, b, c) is in the range of *T*? What is the rank of *T*?
- b. What are the conditions on a vector $(a, b, c) \in \mathbb{R}^3$ such that (a, b, c) is in the null space of T? What is the nullity of T?