MTH 101 - Symmetry

Assignment 10 & Notes

Defn: Let *V* and *W* be two vector spaces over R. A linear transformation from *V* to *W* is a map $T: V \to W$ such that

i. $T(v_1 + v_2) = T(v_1) + T(v_2)$ for all $v_1, v_2 \in V$.

ii. $T(cv) = cT(v)$ for all $c \in \mathbb{R}$ and $v \in V$.

Notice that putting $c = 0$ in (ii), we get $T(0, v) = 0$, $T(v)$ for all $v \in V$. Since for any vector $v \in V$, $0, v$ equal to the 0 vector, therefore a linear transformation always maps the zero vector $\mathbf{0}_V$ of *V* to the zero vector $\mathbf{0}_W$ of *W*. Hence the only linear transformations from the 1-dimensional vector space $\mathbb{R}_{\mathbb{R}}$ to $\mathbb{R}_{\mathbb{R}}$ are

$$
T(v) = cv, \text{ for some } c \in \mathbb{R}.
$$

For $c = 0$, we get the zero transformation, $T(v) = 0$ for all $v \in \mathbb{R}$.

Given a basis $B_V = \{v_1, v_2, \dots, v_n\}$ of an n-dimensional vector space $V|_{\mathbb{R}}$, we know that any vector $v \in V$ is of the form $v = c_1v_1 + c_2v_2 + \cdots + c_nv_n$ for some $c_i \in \mathbb{R}$, i=1,2,..,n. Hence if $T : V \to W$ is a linear transformation, then to determine $T(v)$ it is sufficient to know the values of $\{T(v_i) : i = 1, 2 \cdots, n\}$.

Defn: For a linear transformation $T: V \to W$,

i. The **null space of** *T*, denoted by N_T or $N(T)$ is given as follows:

$$
N(T) = \{v \in V : Tv = 0\}.
$$

(Check that N_T is a subspace of *V*.) The **nullity** of *T* is defined as the **dimensional of** N_T .

ii. The range of *T* is defined as follows:

Range
$$
(T)
$$
 = { $w \in W : Tv = w$, for some $v \in V$ }.

(Check that $Range(T)$ is a subspace of *W*.) The **rank** of *T* is defined as the **dimensional of Range** (T) .

Defn: Given an ordered basis $B_V = \{v_1, \dots, v_n\}$ of $V|_{\mathbb{R}}$, if $v \in V$ is of the form

 $v = c_1v_1 + c_2v_2 + \cdots + c_nv_n$

then the column representation of *v* with respect to the ordered basis B_V is

$$
[v]_{B_V} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} . \tag{1}
$$

Defn: Matrix of *T* relative to the ordered basis $[B_V : B_W]$. Let $B_V = \{v_1, \dots, v_n\}$ be an ordered basis of $V|_{\mathbb{R}}$, $B_W =$ $\{w_1, \dots, w_k\}$ be an ordered basis of $W_{\mathbb{R}}$ and let $T: V \to W$ be a linear transformation. If for $v_i \in B_V$,

$$
T(v_j) = a_{1j}w_1 + a_{2j}w_2 + \cdots + a_{kj}w_k,
$$

then the **matrix of** *T* **relative to the ordered basis** $[B_V : B_W]$ **, is written as follows:**

$$
T_{[B_V:B_W]} = \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \end{array} \right)
$$

Notice that the j^{th} *column of the matrix* $T_{[B_V,B_W]}$ *is a column representation of* $T(v_j)$ *with respect to the ordered basis B_W* of *W* and for $v \in V$ with $[v]_{B_V}$ given by (1),

$$
[Tv]_{B_W}=T_{[B_V:B_W]}.[v]_{B_V},
$$

where $T_{[B_V:B_W]}$. [$v]_{B_V}$ denotes the multiplication of the $k \times n$ matrix $T_{[B_V:B_W]}$, with the $k \times 1$ column matrix $[v]_{B_V}$.

Defn: Given a linear transformation $T : V \to V$, a non-zero vector $v \in V$ is said to be an eigenvector of *T* if there exists $c \in \mathbb{R}$ such that

$$
T(v)=cv.
$$

T is said to be diagonalizable if there exists a basis of *V* consisting of eigenvectors. Notice that if $B_V = \{v_1, \dots, v_n\}$ is an ordered basis of $V|_R$ consisting of eigenvectors, i.e. if $T(v_i) = r_i v_i$, for $i = 1, 2 \cdots, n$ then

$$
T_{[B_V,B_V]} = \left(\begin{array}{cccc} r_1 & 0 & \cdots & 0 \\ 0 & r_2 & \cdots & 0 \\ 0 & 0 & \vdots & \vdots \\ 0 & 0 & \cdots & r_n \end{array} \right),
$$

which is a diagonal matrix.

Defn: Let $B_1 = \{v_1, \dots, v_n\}$ and $B_2 = \{w_1, \dots, w_n\}$ be two ordered basis for $V|_{\mathbb{R}}$ and $C: V \to V$ be a linear transformation such that $B(v_i) = w_i$ for $i = 1, \dots, n$. If $w_i = b_{1i}v_1 + b_{2i}v_2 + \dots + b_{ni}v_n$, then notice that

$$
C_{[B_1,B_2]} = I_n, \quad C_{[B_1,B_1]} = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix}
$$

Notice that the matrix $C_{[B_1,B_1]}$ is the transpose of the change of basis matrix relative to $[B_1,B_2]$. • In literature, $C_{[B_1,B_1]}$ is referred to as the change of basis matrix relative to $[B_1,B_2]$. Henceforth, we shall denote it by $c_{[B_1,B_2]}$ and refer to the matrix $c_{[B_1,B_2]}$ as the change of basis matrix relative to $[B_1,B_2]$.

- 1. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map defined by $T(x_1, x_2) = (x_1, 0)$. Let B_1 be the standard ordered basis of \mathbb{R}^2 and let $B_2 = \{v_1 = (1, 1), v_2 = (-1, 2)\}\$ be another ordered basis of $\mathbb{R}^2|_{\mathbb{R}}$.
	- What is the matrix of *T* relative to the ordered basis $[B_1, B_2]$.
	- What is the matrix of *T* relative to the ordered basis $[B_2, B_1]$.
	- What is the matrix of *T* relative to the ordered basis $[B_2, B_2]$.
	- What is the matrix of *T* relative to the ordered basis $[B_3, B_3]$ where B_3 is the ordered basis $B_3 = \{v_2, v_1\}$.
- 2. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear map defined by $T(x_1, x_2) = (-x_2, x_1, x_1 + x_2)$. Let B_1 be the standard ordered basis of \mathbb{R}^2 , B_2 be the standard ordered basis of \mathbb{R}^3 and let $B = \{v_1 = (1, 1, 1), v_2 = (-1, 2, 0), v_3 = (1, 0, 1)\}$ be another ordered basis of $\mathbb{R}^3|_{\mathbb{R}}$.
	- What is the matrix of *T* relative to the ordered basis $[B_1, B_2]$.
	- What is the matrix of *T* relative to the ordered basis $[B_1, B]$.
	- Is there a relation between the matrices $T_{[B_1,B_2]}$ and $T_{[B_1,B_2]}$.
- 3. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by $Tv = A[v]_{\{e_1, e_2, e_3\}}$ where $\{e_1, e_2, e_3\}$ denotes the standard ordered basis of \mathbb{R}^3 . Determine the rank and nullity of *T*.
- 4. Determine the eigenvectors of the following linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$, whenever they exist.
	- i. $T(x_1, x_2) = (x_1 x_2, x_2).$
	- ii. $T(x_1, x_2) = (2x_1 + x_2, 2x_1 x_2).$