MTH 101 - Symmetry

Assignment 1

1. Let
$$A = \begin{pmatrix} 3 & -1 & -2 \\ 2 & 1 & 1 \\ 1 & -3 & 0 \end{pmatrix}$$
 and $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$.

- (a) List the row vectors and column vectors of A.
- (b) Let A_i denote the *i*th row vector. Then compute the product A_2X .
- (c) In the notation $A = (a_{ij})$, what are the entries a_{23}, a_{31} .
- (d) Compute AX and find all the solutions for AX = 0.
- 2. Let $A = (a_{ij})$ be an $m \times n$ matrix. List the row vectors and column vectors of A.
- 3. Let $M_n(\mathbb{R})$ be the set of all $n \times n$ matrices with entries from \mathbb{R} . Let $E_{c\mathbf{r}}^{\mathbf{r}} : M_n(\mathbb{R}) \to M_n(\mathbb{R})$ be a function that scales the \mathbf{r}^{th} row vector of the matrix by c and maps the other row vectors to themselves. Then given a matrix $A \in M_n(\mathbb{R})$, determine the matrix $E_{c\mathbf{r}}^{\mathbf{r}}(A)$.
- 4. Let $E_{\mathbf{k}+c\mathbf{r}}^{\mathbf{k}}: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ be the function that replaces the \mathbf{k}^{th} row vector of the matrix with the \mathbf{k}^{th} row vector of the matrix plus *c* times the \mathbf{r}^{th} row vector of the matrix and maps the other row vectors to themselves. Then given a matrix $A \in M_n(\mathbb{R})$, determine the matrix $E_{\mathbf{k}+c\mathbf{r}}^{\mathbf{k}}$.
- 5. Let $E_s^{\mathbf{r}} : M_n(\mathbb{R}) \to M_n(\mathbb{R})$ be the function that interchanges the \mathbf{r}^{th} row vector of the matrix with the \mathbf{s}^{th} row vector of the matrix and maps the other row vectors to themselves. Then given a matrix $A \in M_n(\mathbb{R})$, determine the matrix $E_s^{\mathbf{r}}(A)$.
- 6. Determine the matrices

$$E_{c\mathbf{r}}^{\mathbf{r}}(I_n), \quad E_{\mathbf{k}+c\mathbf{r}}^{\mathbf{k}}(I_n), \quad E_{\mathbf{s}}^{\mathbf{r}}(I_n),$$

where I_n denotes the $n \times n$ identity matrix. (The matrices $E_{cr}^{\mathbf{r}}(I_n)$, $E_{\mathbf{k}+c\mathbf{r}}^{\mathbf{k}}(I_n)$ and $E_{\mathbf{s}}^{\mathbf{r}}(I_n)$ are called elementary matrices.)

- 7. Let *E* be an elementary matrix and $e: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ be a function such that $e(I_n) = E$. Given a matrix $A \in M_n(\mathbb{R})$, check that e(A) = EA.
- 8. Let $D = (d_{ij})$ be an $n \times n$ diagonal matrix. Let A be a $n \times m$ matrix. Compute DA. Show that D can be written as the product of elementary matrices.
- 9. Describe explicitly all 2×2 row-reduced matrices.

Note: To determine an $m \times n$ matrix $A = (a_{ij})$, one has to explicitly determine the entries a_{ij} .