Context Free Grammars

Dhruva Sambrani

February 26, 2020

Continued

 $G=(V,\Sigma,R,S)$ where - - V a finite set called the set of variables - Σ a finite set of characters - S \in V start variables - R is a set of rules A \rightarrow string of variables and/or letters from Σ

Rules

supp. rule A \rightarrow 0A1 And if w1 = 01A11 \Longrightarrow w2 = 010A111 where w2 is derived from w1.

Also,

 $w1 \Longrightarrow w2 \Longrightarrow w3 \Longrightarrow w4 \Longrightarrow ... \Longrightarrow wn$

Then w1 =* \Longrightarrow wn

Given a CFG G(= (V, Σ , R, S)), then the language generated by it is LG = { w | w \in \Sigma and S == w }

Example

In the previous case of the Grammar of arithmetic over add and sub, - Σ was {0...9, (,), +, -} - V was {E, N} - R was - E \rightarrow E+E | E-E | (E) | N - N \rightarrow 0 | ... | 9 | NN - S = E

Parse Tree

Stack

FILO - First in Last out. You push into the stack, but you must pop out the last element only.

Figure 1: parsetree.jpg