Continuation of

Dhruva Sambrani

February 17-19, 2020

LoL and L*

Building an NFA for these are explained in the book

 L^* cannot be proven to be regular by assuming it to be $\epsilon \cup L \cup L2 \cup ...$ because this is an infinite union, as infinite unions are not necessarily regular.

Building Regular Languages

Can we build a regular language with the following - " ϵ ", singletons, {} and operations \cup , \circ , *? We know all languages built by such a construction are regular.

Thm: All regular languages can be built in such a way

Regular Expressions

Defn: R is a regex over Σ if R is

- a for some $a \in \Sigma$
- €
- •Ø
- finite $R1 \cup R2$
- finite R1•R2
- R

Examples

If $\Sigma=\{0,1\}$ 1. 0 2. 1 3. 01 } OU1 4. (01) 5. 011
o $(0\cup1)$ 6. (0U1)
o111 7. 011
o $(0\cup1)\circ111$

Why regex?

Regex is a terse way to describe a DFA. A computer can then simulate the DFA and then do a pattern matching. Eg commands on linux-

- grep
- $\bullet \ {\rm sed}$

Hence we try to build a regex from a DFA. Take a DFA, and break it down to the minimal states as above. We remove one state and replace it with a "black" box denoted by a set of regex's for all the possible state changes.

- forks can be a set of tuples (1a, 1b, 2a, 2b)
- loops can be replaced by a *.