NFA

Dhruva Sambrani

February 12, 2020

Formal Defn of an NFA

 $M = (Q, \Sigma, \delta, q0, F)$ $\delta : Q \times (\Sigma \cup \{\epsilon\}) \to \mathcal{P}(Q)$

An NFA N accepts a string s = w1w2w3...wn iff \exists a sequence of r0r1...rn \in Q such that $rn \in$ F and $ri+1 \in \delta(ri, wi)$

Equivalence of NFA and DFA

Theorem: L is regular iff it can be recognized by an NFA.

Proof:

If L is recognisable by a NFA (let) $N = (Q, \Sigma, \delta, q0, F)$

Consider the DFA, D = (Q', $\Sigma,\,\delta',\,q0`,\,F')$ where -

- Q' = P(Q)
 δ': Q' → Q' and

 δ'(A, c) → U E(δ(a,c)), where
 * a∈A
 * E(A) = the set of states connected to some q∈A by ε. Trivially, some qs map to themselves via a ε.
- q0' = E(q0)
- $\mathbf{F}' = \{\mathbf{A}' \in \mathbf{Q}' \mid \mathbf{A} \cap \mathbf{F} \neq \emptyset\}$

If S is accepted by N iff $\exists \ r0...rn \in Q \ r0{=}q0$ and $ri{+}1 \in \delta(ri, \,wi)$

 $\implies ri+1 \in Ri = E(\delta(ri,\,wi)) \text{ and } rn \in Rn \in F.$