Philosophy of Science: Conditional and Indirect Proof Reference: Symbolic Logic (I. M. Copi)

1 The Rule of Conditional Proof

In this lecture, we study arguments whose conclusions are conditional statements. Clearly, to every argument there corresponds a conditional statement whose antecedent is the conjunction of the arguments premisses and whose consequent is the arguments conclusion. An argument is valid if and only if its corresponding conditional is a tautology.

Suppose an argument has a conditional statement of the form $A \implies B$ as its conclusion and suppose we denote the conjunction of its premisses by P, then from above we know that the argument is valid if and only if the conditional $P \implies (A \implies B)$ is a tautology.

The rule of of conditional proof says that we can infer the validity of an argument of the form

$$\begin{array}{ccc} P \\ \vdots & A \implies B \end{array}$$

from the formal proof of validity of the argument

$$\begin{array}{c} P \\ A \\ \therefore B \end{array}$$

That is one may think of the antecedent in the conclusion as an additional premiss and then deduce the consequent of the conclusion by a sequence of elementary valid argument.

The rule can be applied multiple times as seen in the example below.

Example 1.1. Consider the argument:

$$A \implies (B \implies C)$$
$$B \implies (C \implies D)$$
$$\therefore A \implies (B \implies D)$$

By the rule of conditional proof, proving the validity of the above argument is same as proving the validity of the following argument:

$$A \implies (B \implies C)$$
$$B \implies (C \implies D)$$
$$A$$
$$\therefore (B \implies D)$$

This can further be reduced to

$$A \implies (B \implies C)$$
$$B \implies (C \implies D)$$
$$A$$
$$B$$
$$\therefore D$$

Example 1.2. Consider the argument:

$$(A \lor B) \implies (C \cdot D)$$
$$(D \lor E) \implies F$$
$$\therefore A \implies F$$

This may be written as:

1. $(A \lor B) \implies (C \cdot D)$ 2. $(D \lor E) \implies F$ $(\therefore A \implies F)$ 3. A. $(\therefore F)$ 4. $A \lor B$ (Add. 3)5. $C \cdot D$ (M.P. 1, 4)6. $D \cdot C$ (Com. 5)7. D (Simp. 6)8. $D \lor E$ (Add. 7)9. F (M.P. 2, 8)

where, the first two lines follow from the above discussed rule of conditional proof.

2 Reductio Ad Absurdum or The Rule of Indirect Proof

The idea is as follows: We start by assuming the opposite of the conclusion (that we want to prove from the premisses). If that assumption leads to a contradiction, or 'reduces to an absurdity', then the assumption must be false, and so its negation (which was the original statement of the conclusion) must be true. That is, **An indirect proof of validity for a given argument is constructed by assuming, as an additional premiss, the negation of its conclusion, and then deriving an explicit contradiction from the augmented set of premisses.**

Example 2.1. Consider the following argument.

$$\begin{array}{l} A \implies (B \cdot C) \\ (B \lor D) \implies E \\ D \lor A \\ \therefore E \end{array}$$

We now give an indirect proof of validity of this argument.

- 1. $A \implies (B \cdot C)$ 2. $(B \lor D) \implies E$ 3. $D \lor A$ ($\therefore E$) 4. $\sim E$ (adding the negation - Indirect Proof (I.P.)) 5. $\sim (B \lor D)$ (M.T. 2, 4) 6. $\sim B \cdot \sim D$ 7. $\sim D \cdot \sim B$ 8. $\sim D$ 9. A10. $B \cdot C$ 11. B (Simp. 10) 12. $\sim B$ (Simp. 6)
- 13. $B \cdot \sim B$

the last line is a contradiction. This completes the indirect proof of the validity of the argument given above.

Exercise 2.2. Fill in the details of the proof in example 3.1 by specifying the elementary valid arguments used to deduce steps 6, 7, 8, 9, 10 and 13.

Exercise 2.3. Construct both a formal proof of validity and an indirect proof for the following argument:

$$(H \Longrightarrow I) \cdot (J \Longrightarrow K)$$
$$(I \lor K) \Longrightarrow L$$
$$\sim L$$
$$\therefore \quad \sim (H \lor J)$$