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Deductive Systems

6.1 Definition and Deduction

In the preceding chapters a number of principles of logic have been set
forth. These principles embody some knowledge about logic, but they do not
constitute a science of logic, for science is organized knowledge. No mere list
or catalog of truths is ever said to constitute a system of knowledge or a
science. We have scientific knowledge only when the propositions setting forth
what we know are organized in a systematic way, to display their inter-
relations. If a system of logic or a science of logical principles is to be achieved,
those principles must be arranged or organized in a systematic fashion. This
task will be attempted, on a limited scale, in the following chapters. But first
it will be of interest to consider the general questions of what interrelations
are important, and how propositions may be organized into a system or
science.

All knowledge that we possess can be formulated in propositions, and these
propositions consist of terms. In any science, some propositions can be
deduced from or proved on the basis of other propositions. For example,
Galileo’s laws of falling bodies and Kepler’s laws of planetary motion are all
derivable from Newton’s more general laws of gravitation and motion, and
the discovery of these deductive interrelationships was an exciting phase in
the development of the science of physics. Thus one important relationship
among the propositions of a science is deducibility. Propositions that embody
knowledge about a subject become a science of that subject when they are
arranged or ordered by displaying some of them as conclusions deduced from
others. .

In any science, some of the terms involved in its propositions can be define
on the basis of other terms. For example, in physics again, density is defined
as mass per unit volume, acceleration is defined as the time rate of change
in velocity, and velocity is in turn defined as the time rate of change of position.
This definition of some terms by means of others also serves to reveal inter-
relations among the propositions. It shows their concern with a common
subject matter, and integrates the concepts of the science just as deductions
integrate its laws or statements. Propositions that embody knowledge are
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helped to become a science when some of the words or symbols they contain
are defined in terms of their other symbols.

The recognition of definition and deduction as imﬁ‘ortant to science may
suggest a specious ideal for scientific systems. It may be imagined that in an
ideal science all propositions should be proved, by deducing them from others,
and all terms should be defined. But this would be ‘ideal’ only in the sense
of being impossible to realize. Terms can be defined only by means of other
terms, whose meanings are presupposed and must be antecedently understood
if the definitions are to explain the meanings of the terms being defined. And
deductions can establish their conclusions only on the basis of premisses, which
must already have been verified if the conclusions are really to be established
by the proofs. Hence, if all terms or symbols of a system are to be defined
within the system, there must be either infinite sequences of definitions, or
circular definitions, as in a pocket dictionary which defines the word ‘big’
as meaning large, and the word ‘large’ as meaning big. Circular definitions
are obviously worthless as explanations, and infinite sequences of definitions
are worthless also, for no term will really be explained until the end is reached,
and an infinite sequence has no end. Similarly, to prove all propositions there
must be either infinite regressions of proofs or circular proofs. And these are
equally objectionable.

It must be admitted that within a system of propositions which constitutes
a science, not all propositions can be proved, and not all terms can be defined.
It is not that there is some particular proposition that cannot be proved, or
some particular term that cannot be defined, but rather that they cannot all
be proved or defined without a vicious regression or circularity arising. The
ideal of science, then, cannot be a system in which every proposition is proved
and every term defined, but is rather one in which a minimum number of
propositions suffice for the deduction of all the rest, and a minimum number
of terms suffice for the definition of all the others. This ideal of knowledge
is described as a deductive system.

6.2 Euclidean Geometry

Euclidean Geometry is the oldest example of systematized knowledge or
science. Of historical interest and importance in its own right, it has the
advantage (for our purpose) of being an example with which the reader has
already come into contact in high school.

It is generally recognized that geometry, as a science, was originated and
developed by the Greeks. Among the most important contributors to its
development were the mathematicians Pythagoras and Euclid. And yet,
geometrical truths were known to the Egyptians thousands of years earlier,
as attested by their pyramids, already ancient in the time of Pythagoras (6th
century B.C.). Records reveal that the Babylonians, even earlier, were familiar
with various principles of geometry. If geometrical knowledge already existed
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before their time, in what sense did the Greeks originate the science of
geometry? The answer has already been indicated. Before Pythagoras, man’s
geometrical knowledge consisted of a collection or catalog of almost wholly
isolated facts. Geometrical truths constituted a mere list of useful empirical
rules-of-thumb for surveying land or constructing bridges or buildings, and
there was no system to their knowledge of geometrical truths. By introducing
order into the subject, the Greeks transformed it from a mere body of isolated
bits of knowledge into a science.

System was introduced into geometry by the deduction of some of its
propositions from others. The propositions of geometry were ordered by listing
earlier those which could be used as premisses in the demonstrations of those
which were put later. This systematization of geometry was begun by Pythag-
oras and continued by his successors. It culminated in the Elements of Euclid
(c.300 B.C.), in which all geometrical propositions were arranged in order,
beginning with Axioms, Definitions, and Postulates, and continuing with Theo-
rems deduced from the initial propositions. Geometry was cast by the Greeks
into the form of a deductive system. Theirs was the first deductive system
ever devised, and so great was the achievement that it has served as a model
for scientific thought down to the present time. Even today the most advanced
sciences are those which most nearly approximate the form of a deductive
system. These are the sciences which have achieved a relatively small number
of very general principles from which a relatively large number of other laws
and special cases may be derived. Parts of physics have actually been formu-
lated as deductive systems, and similar attempts have been made, with some-
what less impressive results, in parts of biology and psychology also. Perhaps
the boldest attempt in this direction was that of Spinoza, whose most impor-
tant work, the Ethics, was written in ‘geometrical’ form. Starting with axioms
and definitions, Spinoza attempted to deduce the rest of his metaphysical and
ethical doctrines as theorems provable on the basis of those initial assumptions.

Euclid begins his geometry with definitions of some of the terms used in
its development. Thus Definition 1 reads: ‘A point is that which has no parts’,
and Definition 2 reads: ‘A line is length without breadth’.! Euclid does not
attempt to define all his terms, of course. The first two definitions define the
terms ‘point’ and ‘line’ respectively. The words used in these definitions, such
as ‘parts’, ‘length’, and ‘breadth’ are not themselves defined but are among
the undefined terms of the system for Euclid. As more new terms are intro-
duced their definitions make use of previously defined terms as well as the
original undefined ones. Thus Definition 4: ‘A straight line is. .. [a line]...
which lies evenly between its extreme points’, makes use not only of such
undefined terms as ‘evenly’ and ‘between’, but also the previously defined terms
‘point’ and ‘line’.

The use of defined terms is, from the point of view of logic, a matter of
convenience only. Theoretically, every proposition that contains defined terms

1These and the following are quoted from the Todhunter edition of The Elements of Euclid,
No. 891 of Everyman’s Library, London and New York.
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can be translated into one that contains only undefined ones by replacing each
occurrence of a defined term by the sequence of undefined terms which was
used to define it. For example, Postulate 1: ‘Let it be granted that a straight
line may be drawn from any one point to any other point’, which contains
the defined terms ‘straight’, ‘line’, and ‘point’, can be expressed without using
those defined terms as: ‘Let it be granted that a length without breadth which
lies evenly between its extreme parts which (themselves) have no parts may
be drawn from any one thing which has no parts to any other thing which
has no parts’. But this version of the Postulate is extremely awkward. Although
they are theoretically eliminable, in actual practice a considerable economy
of space, time, and effort is effected by using relatively brief defined terms
to replace lengthy sequences or combinations of undefined ones.

In setting up his deductive system of geometry, Euclid divided his unproved
propositions into two groups, one called ‘Axioms’, the other called ‘Postulates’.
He gave, however, no reason for making this division, and there seems to
be no very clear basis for distinguishing between them. Possibly he felt that
some were more general than others, or psychologically more obvious. The
contemporary practice is to draw no such distinction, but to regard all the
unproved, initial propositions of a deductive system as having the same
standing, and to refer to them all, indifferently, as ‘axioms’ or as ‘postulates’,
without attaching any difference in meaning to those two terms.

Every deductive system, on pain of falling into circularity or a vicious
regression, must contain some axioms (or postulates) which are assumed but
not proved within the system. They need not be precarious assumptions, or
mere assumptions. They may be very carefully and convincingly established—
but they are not proved within the system itself. Any argument intended to
establish the truth of the axioms is definitely outside the system, or extra-
systematic.

The older conception of Euclidean geometry held not only that all of its
theorems followed logically from its axioms, and were therefore just as true
as the axioms, but also that the axioms were self-evident. It is in this tradition
to regard any statement as ‘axiomatic’ when its truth is beyond all doubt, being
evident in itself and not requiring any proof. It should be clear from what
has already been said, however, that we are not using the word ‘axiom’ in
that sense. No claim is made that the axioms of any system are self-evidently
true. Any proposition of a deductive system is an axiom of that system if it
is assumed rather than proved in that system. This modern point of view has
arisen largely as a consequence of the historical development of geometry
and physics.

The self-evident truth of the Euclidean axioms (and postulates) was long
believed. It was not believed quite whole-heartedly, however. Most of the
axioms, such as Axiom 9: ‘The whole is greater than its part’, were not
questioned; but while there was no doubt about the truth of Axiom 12 (the
famous ‘parallel Postulate’), there was considerable scepticism about its “self-
evidence’. Axiom 12 reads: ‘If a straight line meet two straight lines, so as
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to make the two interior angles on the same side of it taken together less
than two right angles, these straight lines, being continually produced, shall
at length meet on that side on which are the angles which are less than two
right angles’? Proclus, a fifth century a.n. commentator, wrote of it: “This
ought even to be struck out of the Postulates altogether; for it is a theorem
involving many difficulties . . .”.3 That is, although its truth was not questioned,
its self-evidence was denied, which was deemed sufficient reason to relegate
it from its exalted position as axiom to the less exalted status of a mere theorem.
The history of mathematics is filled with attempts to prove the proposition
in question as a theorem, either by deducing it from the remaining axioms
of Euclid, or from those axioms supplemented by some more nearly ‘self-
evident’ additional assumption. The latter kind of attempt was pretty uni-
formly unsuccessful, because every additional or alternative assumption strong
enough to permit the deduction of the parallel postulate turned out to be
no more self-evident than Euclid’s own hypothesis. The first kind of attempt
failed also; it was just not possible to deduce the parallel postulate from the
others. The most fruitful attempt was that of the Italian mathematician
Gerolamo Saccheri (1667-1733), who replaced the parallel postulate by alter-
native, contrary assumptions, and then sought to derive a contradiction from
them together with Euclid’s other axioms. Had he succeeded in doing so, he
would have obtained a reductio ad absurdum proof of the parallel postulate.
He derived many theorems that he regarded as absurd because they were
so different from common sense or ordinary geometrical intuition. He believed
himself to have succeeded thus in demonstrating the parallel postulate, and
in ‘vindicating Euclid’. But his derived theorems, while ‘absurd’ in the sense
of violating ordinary geometrical intuitions, were not ‘absurd’ in the logical
or mathematical sense of being self-contradictory. Instead of proving the
parallel postulate, Saccheri (unknowingly) did something more important: he
was the first to set up and develop a system of non-Euclidean geometry.
The parallel postulate is in fact independent of the other Euclidean postu--
lates—although it was not proved to be so until the modern period. It is
independent of the other postulates in the sense that neither it nor its denial
is deducible from them. Alternative systems of ‘geometry’, non-Euclidean
geometries, were subsequently developed, notably by Lobachevsky and Rie-
mann. These were long regarded as ingenious fictions, mere mathematical
playthings, in contrast with the Euclidean geometry which was ‘true’ of the
real space about us. But subsequent physical and astronomical research along
lines suggested by Einstein’s theory of relativity has tended to show that—to
the extent that the question is significant—‘real’ or physical space is more
probably non-Euclidean than Euclidean. In any event, the truth or falsehood
of its axioms is a purely external property of any deductive system. The truth

2Listed as Postulate 5 by Sir Thomas L. Heath, in The Thirteen Books of Euclid’s Elements,
Cambridge, Eng., Cambridge University Press, 1926. For an interesting discussion of the history
of the parallel postulate, the reader is referred to pages 202 ff. of Volume I of that work.
31bid., p. 202.
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of its propositions is an extrasystematic consideration. It is no doubt important
to the extent that a deductive system is ordered knowledge; but when we
concentrate our attention on the system as such, its order\is its more important
characteristic.

From the purely mathematical or logical point of view, a deductive system
can be regarded as a vast and complex argument. Its premisses are the axioms,
and its conclusion is the conjunction of all the theorems deduced. As with
any other argument, the logical question does not concern the truth or
falsehood of the premisses, but the validity of the inference. Granted the truth
of the axioms, does the truth of the theorems necessarily follow? That is the
question with which the logician and the mathematician are concerned. The
answer is, of course, yes—if the demonstrations of the theorems are all valid
arguments. Hence the most important aspect of any deductive system is the
cogency with which its theorems are proved. In the rigorous development
of deductive systems in abstraction from the extrasystematic explanation of
their undefined terms, the question of truth or falsehood is obviously irrelevant.

6.3 Formal Deductive Systems

There are serious errors in the system of geometry set forth by Euclid in
his Elements. Indeed, a mistake occurs in his very first proof. The flaw in his
proof, paradoxically enough, was the result of his knowing too much about
his subject. He did not appeal to his explicitly stated axioms alone as premisses,
but depended also upon what might be called his geometrical intuition.?
Where a chain of argument involves familiar notions, there is always the
danger of assuming more than the explicitly stated premisses warrant. That
is particularly serious in the development of a deductive system, for any
attempted systematization which appeals to new and unacknowledged as-
sumptions in the derivations of its theorems thereby fails to achieve its aim.
In a deductive system the theorems must be deduced rigorously from the stated
postulates. If they are not, however true they may be, the result falls short
of the goal of systematization.

Since lapses from rigor are most often occasioned by too great familiarity
with the subject matter, mathematicians have found it helpful to minimize
or eliminate such familiarity in the interest of achieving greater rigor. In the
case of geometry, that end is accomplished by abstracting from the meanings
of such geometrical words as ‘point’, ‘line’, and ‘plane’, and developing the
theorems as purely formal consequences of the postulates. The familiar geo-
metrical words, with all their associations and suggestions, are replaced by

4Euclid’s proof and a brief discussion of his mistake can be found on pages 241-243 of Volume
I of The Thirteen Books of Euclid’s Elements, by Heath, op. cit. An example of how the same
type of error can lead to conclusions that are false or even sef-contradictory can be found on
pages 77-78 of Mathematical Recreations and Essays, by W. W. Rouse Ball, New York, The
Macmillan Company, 1940.
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arbitrary symbols. Instead of deductive systems explicitly and avowedly
concerned with geometrical entities, mathematicians today develop formal
deductive systems whose primitive or undefined terms include arbitrary,
uninterpreted symbols, usually letters of the Greek or Latin alphabets. Since
the undefined terms of a formal deductive system include arbitrary symbols,
its postulates are not propositions at all, but mere formulas, and so are the
theorems.

Deductive relationships can exist, of course, among mere formulas as well
as among propositions. Thus the formula ‘all F’s are H’s’ is logically deducible
from the formulas ‘all F’s are G’s’ and ‘all G’s are H’s’. Because the postulates
and theorems of a formal deductive system are formulas rather than proposi-
tions, the proofs of theorems can proceed unhampered by familiar associations
and unconscious assumptions. Moreover, because the formulas are not propo-
sitions, the question of their truth is strictly irrelevant and does not arise.

More than rigor is gained by the formal development of deductive systems.
Since some of the symbols of a formal deductive system are arbitrary un-
interpreted symbols, it may be possible to give them different, alternative
interpretations. And since the theorems are formal consequences of the axioms,
any interpretation of the arbitrary symbols which makes the axioms true will
necessarily make the theorems true also. The additional advantage of gen-
erality is thus gained. An example may help to make this clear. Given some
knowledge about astronomy, it may be desired to set up a deductive system
for that subject. To avoid the errors into which familiarity with the subject
matter may lead in deducing theorems from the axioms chosen, the system
may be developed formally. Instead of taking, say, ‘stars’ and ‘planets’ among
the undefined terms, one may take ‘A’s and ‘B’s. The axioms and theorems
will contain these symbols, and when the system is developed, all its formulas
may be interpreted by letting the symbol ‘A’ designate stars and the symbol
‘B’ designate planets. Now, if the axioms are true when so interpreted, the
theorems must be true also, and the formal system with this interpretation
will constitute a science or deductive system of astronomy. But it may be
possible to find a different interpretation of the symbols ‘A’ and ‘B’ which
also makes the axioms true (and hence the theorems also). The formulas of
the system might be made into different but equally true statements by letting
the symbol ‘A’ designate atomic nuclei and the symbol ‘B’ designate electrons.
Could this be done (and at one stage in the history of atomic physics it seemed
highly plausible), the original formal system with this second interpretation
would constitute a science or deductive system of atomic physics. Hence
developing a deductive system formally, i.e., not interpreting its undefined
terms until after its theorems have all been derived, not only helps achieve
rigor in its development, but also achieves greater generality because of the
possibility of finding alternative interpretations for it (and applications of it).
This kind of advantage is often realized in pure mathematics. For example,
different interpretations of its arbitrary primitive symbols will transform the
same formal deductive system into the theory of real numbers, on the one
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hand, or into the theory of points on a straight line, on the other. That fact
provides the theoretical foundation for the branch of mathematics called
Analytical Geometry.

As the term is being used here, a formal deductive system is simply a
deductive system, consisting of axioms and theorems, sorhe of whose undefined
or primitive terms are arbitrary symbols whose interpretation is completely
extrasystematic. In addition to those special undefined terms, and others
defined by means of them, the formulas (axioms and theorems) of the system
contain only such logical terms as ‘if . .. then ..., ‘and’, ‘or’, ‘not’, ‘all’, ‘are’,
and the like, and possibly (unless the system is intended for arithmetic itself)
such arithmetical terms as ‘sum’ and ‘product’, and numerical symbols.

6.4 Attributes of Formal Deductive Systems

Usually, though not always, a formal deductive system is set up with some
particular interpretation ‘in mind’. That is, the investigator has some knowl-
edge about a certain subject, and wishes to set up a system adequate for its
expression. When the formal system has been constructed, the question natu-
rally arises as to whether or not it.is adequate to the formulation of all the
propositions it is intended to express. If it is, it may be said to be ‘expressively
complete’ with respect to that subject matter. We are here discussing what
can be said in the system, not what can be proved. With respect to a given
subject matter, a formal deductive system is ‘expressively complete’ when it
is possible to assign meanings to its undefined terms in such a way that every
proposition about that subject matter can be expressed as a formula of the
system. Whether the true propositions can be proved as theorems or not is
another question, which will be discussed below.

A system is said to be inconsistent if two formulas, one of which is the
denial or contradictory of the other, can both be proved as theorems within
it. A system is consistent if it contains no formula such that both the formula
and its negation are provable as theorems within it. As was shown in Chapter
3, a contradiction logically entails any proposition whatever. Hence a deriva-
tive definition or criterion for consistency can be formulated as follows: Any
system is consistent if it contains (that is, can express) a formula that is not
provable as a theorem within it. This is known as the ‘Post criterion for
consistency’, having been enunciated by the American mathematician and
logician, E. L. Post. Consistency is of fundamental importance. An inconsistent
deductive system is worthless, for all of its formulas are provable as theorems,
including those which are explicit negations of others. When the undefined
terms are assigned meanings, these contradictory formulas become contra-
dictory propositions, and cannot possibly all be true. And since they cannot
possibly be true, they cannot serve as a systematization of knowledge—for
knowledge is expressed in true propositions only.
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If one succeeds in deriving both a formula and its negation as theorems
of a system, that proves the system inconsistent. But if one tries and does
not succeed in deriving both a formula and its negation as theorems, that does
not prove the system to be consistent, for it may only reflect a lack of ingenuity
at making proofs on the part of the investigator. How then can the consistency
of a deductive system be established? One method of proving the consistency
of a formal deductive system is to find an interpretation of it in which all
its axioms and theorems are true propositions. Since its theorems are logical
consequences of its axioms, any interpretation which makes its axioms true
will make its theorems true also. Hence it is sufficient for the purpose of
proving a system consistent to find an interpretation which makes all of its
axioms true. .

The axioms of a deductive system are said to be independent (or to exhibit
independence) if no one of them can be derived as a theorem from the others.
A deductive system which is not consistent is logically objectionable and
utterly worthless, but there is no logical objection to a deductive system whose
axioms are not independent. However, it is often felt that making more
assumptions than necessary for the development of a system is extravagant
and inelegant, and should be avoided. When a formula need not be assumed
as an axiom, but can be proved as a theorem, it ought to be proved and not
assumed, for the sake of ‘economy’. A set of axioms which are not independent
is said to be ‘redundant’. A redundant set of axioms is aesthetically inelegant,
but it is not logically ‘bad’.

If one of the axioms of a system can be derived from the remaining ones,
the set of axioms is thereby shown to be redundant. But if one tries and is
not able to derive any of the axioms from the remaining ones, they are not
thereby shown to be independent, for the failure to find a demonstration may
be due only to the investigator’s lack of ingenuity. To prove any particular
axiom independent of the others, it suffices to find an interpretation which
makes the axiom in question false and the remaining ones all true. Such an
interpretation will prove that the axiom in question is not derivable as a
theorem from the others, for if it were, it would be made true by any assign-
ment of meanings which made the others true. If such an interpretation can
be found for each axiom, this will prove the set of axioms to be independent.

The notion of deductive completeness is a very important one. The term
‘completeness’ is used in various senses. In the least precise sense of the term
we can say that a deductive system is complete if all the desired formulas
can be proved within it. We may have an extrasystematic criterion for the
truth of propositions about the subject matter for which we constructed the
deductive system. If we have, then we may call that system complete when
all of its formulas which become true propositions on the intended inter-
pretation are provable formulas or theorems of the system. (In any sense of
the term, an inconsistent system will be complete, but in view of the worth-
lessness of inconsistent systems, we shall confine our attention here to con-
sistent systems.)
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There is another conception of completeness which can be explained as
follows. Any formal deductive system will have a certain collection of special
undefined or primitive terms. Since any terms definable within the system
are theoretically eliminable, being replaceable in any formula in which they
occur by the sequence of undefined terms by means of\which they were
defined, we shall ignore defined terms for the present. All formulas which
contain no terms other than these special undefined terms (and logical terms)
are expressible within the system. We may speak of the totality of undefined
terms as the base of the system, and the formulas expressible in the system
are all formulas constructed on that base. In general, the totality of formulas
constructed on the base of a given system can be divided into three groups:
first, all formulas which are provable as theorems within the system; second,
all formulas whose negations are provable within the system; and third, all
formulas such that neither they nor their negations are provable within the
system. For consistent systems the first and second groups are disjoint, that
is, have no formulas in common. Any system whose third group is empty,
containing no formulas at all, is said to be deductively complete. An alternative
way of phrasing this sense of completeness is to say that every formula of
~ the system is such that either it or its negation is provable as a theorem.

Another definition of ‘completeness’, entailed by but not equivalent to the
preceding one, is that a deductive system is complete when every formula
constructed on its base is either a theorem or else its addition as an axiom
would make the system inconsistent.

An example of an incomplete deductive system would be Euclidean geom-
etry minus the parallel postulate. For the parallel postulate is itself a formula
constructible on the base of the Euclidean system, yet neither it nor its
negation is deducible from the other postulates. It is clear that although
completeness is an important attribute, an incomplete deductive system may
be very interesting and valuable. For by investigating the incomplete system
of Euclidean geometry without the parallel postulate, we can discover those
properties possessed by space independently of the question of whether it is
Euclidean or non-Euclidean. Perhaps a more cautious and less misleading
formulation of the same point is to say that by investigating the incomplete
system we can discover the common features of Euclidean and non-Euclidean
geometries. Yet for many purposes, a complete system is to be preferred.

6.5 Logistic Systems

Most important of all attributes for a deductive system to possess is that
of rigor. A system has rigor when no formula is asserted to be a theorem unless
it is logically entailed by the axioms. It is for the sake of rigor that arbitrary
rather than familiar symbols are taken as undefined or primitive terms, and
the system developed formally. Listing clearly all the undefined terms, and
explicitly stating all the axioms used as premisses for the theorems, will help
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to specify precisely which formulas are to be esteemed as theorems and which
are not. With the increased emphasis on rigor that characterizes the modern
period, critical mathematicians have seen that this is not enough. To achieve
rigor, more is required.

A system is rigorous only when its theorems are proved logically, or derived
logically from its axioms. It has now been realized that however clearly its
axioms are stated, a formal system will lack rigor unless the notion of logical
proof or logical derivation is specified precisely also. All deductive systems
of the sort that have been mentioned, even formal deductive systems which
contain logical terms in addition to their own special uninterpreted symbols,
depend upon ‘ordinary logic’ for their development. They assume logic, in
the sense that their theorems are supposed to follow logically from their
axioms. But they do not specify what this ‘logic’ is. Hence all earlier deductive
systems, for geometry, or physics, or psychology, or the like, contain concealed
assumptions which are not explicitly stated. These hidden assumptions are
the rules or principles of logic to which one appeals in constructing proofs
or derivations of theorems. Hence all those deductive systems fall short of
complete rigor, for not all of their presuppositions are acknowledged. There-
fore their developments are not entirely rigorous, but more or less loose. The
question naturally arises: How can this looseness be eliminated, and greater
rigor be achieved? The answer is obvious enough. A deductive system will
be developed more rigorously when it is specified not only what axioms are
assumed as premisses in deriving the theorems, but also what principles of
inference are to be used in the derivations. The axioms must be supplemented
by a list of valid argument forms, or principles of valid inference.

The demand for rigor and for system does not stop even here, however.
For the sake of rigor, in addition to its own special axioms, a deductive system
must specify explicitly what forms of inference are to be accepted as valid.
But it would be unsystematic—and probably impossible—simply to list or
catalog all required rules of logic or valid modes of inference. A deductive
system of logic itself must be set up. Such a deductive system will have
deduction itself as its subject matter. A system of this type, often referred
to as a logistic system, must differ from the ordinary, less formal varieties in
several important respects. Since its subject matter is deduction itself, the
logical terms if ... then..., ‘and’, ‘or’, ‘not’, and so on, cannot occur in it
with their ordinary meanings simply assumed. In their stead must be uninter-
preted symbols. And the logical principles or rules of inference that it assumes
for the sake of deducing logical theorems from logical axioms must be few
in number and explicitly stated.

A second fundamental difference between logistic systems and other formal
deductive systems is that in the latter the notion of a significant or ‘well
formed’ formula need not be specified, whereas it is absolutely required in
a logistic system. In an ordinary (nonformal) deductive system, it will be
obvious which sequences of its words are significant propositions of English
(or of whatever the natural language is in which the system is. expressed). In
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a formal but nonlogistical deductive system, the sequences of its symbols are
easily divided into those which ‘make sense’ and those which do not, for they
will contain such ordinary logical words as ‘if . . . then .., ‘and’, ‘or’, or ‘not’,
by whose disposition in the sequence it can be recognized as significant or
otherwise. An example will make this clear. In a forial deductive system
which contains ‘A’, ‘B’, and ‘C’ as uninterpreted primitive symbols, the se-
quence of symbols ‘If any A is a B, then it is a C’ is clearly a complete and
‘significant’ formula which may or may not be provable as a theorem. But
the sequence of symbols ‘If any A is a B’ is obviously incomplete, while the
sequence ‘And or or A B not not if” is clearly nonsense. These are recognized
as ‘complete’ or ‘well formed’, as ‘incomplete’ or ‘ill formed’ by the presence
in them of some symbols whose meanings are understood. In a logistic system,
however, all symbols are uninterpreted: there are no familiar words within
its formulas (or sequences of symbols) to indicate which are ‘well formed’ and
which are not. Where the symbols ‘A’, ‘B’, ‘~’, and ‘D’ are uninterpreted,
there must be some method of distinguishing between a well formed formula
like ‘A O ~B’ and one like ‘AB D ~’, which is not well formed. By our
knowledge of the normal interpretations of these symbols we can recognize
the difference and classify them correctly, but for the rigorous development
of our system we must be able to do this in abstraction from the (intended)
meanings of the symbols involved.

The matter may be expressed in the following terms. As ordinarily conceived,
a nonformal deductive system (interpreted, like Euclidean geometry) is an
arrangement or organization of propositions about some specified subject
matter. Consisting of propositions, it is a language in which the subject matter
may be discussed. Understanding the language, we can divide all sequences
of its words into those which are meaningful statements and those which are
meaningless or nonsensical. This division is effected in terms of meanings and
is thus done nonformally. In a logistic system the situation is different, for
prior to the extrasystematic assignment of meanings or interpretation, all
sequences of symbols are without meaning. Yet we want, prior to and inde-
pendent of its interpretation, a comparable division of all of its formulas into
two groups. When meanings are assigned to the primitive symbols of a logistic
system, some of its formulas will express propositions, while others will not.
We may informally characterize a formula which on the intended inter-
pretation becomes a significant statement as a ‘well formed formula’ (custom-
arily abbreviated ‘wff’). Any formulas which on the intended interpretation
do not become significant statements are not well formed formulas. In a logistic
system there must be a purely formal criterion for distinguishing well formed
formulas from all others. To characterize the criterion as “purely formal’ is
to say that it is syntactical rather than semantical, pertaining to the formal
characteristics and arrangements of the symbols in abstraction from their
meanings. Thus a logistic system must contain only uninterpreted symbols,
and must provide a criterion for dividing sequences of these symbols into two
groups, the first of which will contain all well formed formulas, the second
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containing all others. Of the well formed formulas, some will be designated
as Axioms (or Postulates) of the logistic system.

It is also desired to divide all well formed formulas which are not axioms
into two groups, those which are theorems and those which are not. The
former are those which are derivable from the axioms or postulates, within
the system. Although uninterpreted, the well formed formulas of a logistic
system constitute a ‘language’ in which derivations or proofs can be set down.
Some well formed formulas will be assumed as postulates, and other well
formed formulas will be derived from them as theorems. It might be proposed
to define ‘theorem’ as any wff which is the conclusion of a valid argument
whose premisses include only axioms of the system. This proposed definition
of ‘theorem’ will be acceptable only if the notion of a valid argument within
the logistic system can be defined formally. Because all wiffs of the system
are uninterpreted, the ordinary notion of validity cannot be used to charac-
terize arguments within the system, for the usual notion of validity is semanti-
cal, an argument being regarded as valid if and only if the truth of its premisses
entails the truth of its conclusion. Consequently, a purely formal or syntactical
criterion of validity must be provided for arguments expressed within the
system. ‘Valid’ arguments within the system may have not merely postulates
or already established theorems as premisses and new theorems as conclusions,
but may have as premisses any wffs, even those which are neither postulates
nor theorems, and as conclusions wffs which are not theorems. Of course it
is desired that any argument within the system which is syntactically ‘valid’
will become, on the intended or ‘normal’ interpretation, a semantically valid
argument.

Any logistic system, then, will contain the following elements: (1) a list of
primitive symbols which, together with any symbols defined in terms of them,
are the only symbols which occur within the system; (2) a purely formal or
syntactical criterion for dividing sequences of these symbols into formulas
which are well formed (wffs) and those which are not; (3) a list of wifs assumed
as postulates or axioms; (4) a purely formal or syntactical criterion for dividing
sequences of well formed formulas into ‘valid’ and ‘invalid’ arguments; and
(5), derivatively from (3) and (4), a purely formal criterion for distinguishing
between theorems and nontheorems of the system.

Different logistic systems may be constructed as systematic theories of
different parts of logic. The simplest logistic systems are those which formalize
the logic of truth-functional compound statements. These systems are called
propositional calculi or, less frequently, sentential calculi. One particular
propositional calculus will be presented and discussed in the following chapter.



