Assignment 7

Indian Institute of Science Education and Research

CHM202: Energetics and dynamics of chemical reactions

Instructor: Dr. Arijit K. De

Ques. 1 Initial rate of a first order gaseous reaction becomes three times when the temperature increases from 400K to 420K. If the half-life time of the reaction at 400K is 10 minutes, find out the time (in seconds) needed for 25% conversion of the reactant into product at 420K. [R=1.987cal K^{-1} mol⁻¹]

Ques.2 Derive an integrated expression for a second-order rate law v = k[A][B] for a reaction of stoichiometry 2 A + 3 B \rightarrow P.

Ques.3 The second-order rate constant for the reaction $CH_3COOC_2H_5(aq) + OH^-(aq) \rightarrow CH_3CO_2^-(aq) + CH_3CH_2OH(aq)$

is $0.21 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$. What is the concentration of ester after (a) 10 s, (b) 10 min when ethyl acetate is added to sodium hydroxide so that the initial concentrations are [NaOH] = $0.030 \text{ mol dm}^{-3}$ and [CH₃COOC₂H₅] = $0.200 \text{ mol dm}^{-3}$?

Ques.4 Find an expression for the time it takes for the concentration of a substance to fall to one-third its initial value in an *n*th-order reaction.

Ques.5 The rate constant of a first order reaction is $2.50 \times 10^{-4} \, \text{sec}^{-1}$ at $290 \,^{\circ}\text{C}$. If the activation energy is $154 \, \text{kJ/mol}$, what is the temperature at which the rate constant is $3.20 \times 10^{4} \, \text{sec}^{-1}$.

Ques.6 One of the hazards of nuclear explosions is the generation of 90 Sr and its subsequent incorporation in place of calcium in bones. This nuclide emits β rays of energy 0.37 MeV, and has a half-life of 22.1 year. Suppose 2.00 μ g was absorbed by a newly born child. How much will remain after (a) 15 year, (b) 60 year if none is lost metabolically?