Assignment 3

Indian Institute of Science Education and Research CHM202: Energetics and dynamics of chemical reactions Instructor: Dr. Arijit K. De

Ques. 1 From the following data, determine $\Delta_{f}H^{0}$ for diborane, $B_{2}H_{6}(g)$, at 298 K:

(1) $B_2H_6(g) + 3 O_2(g) \rightarrow B_2O_3(s) + 3 H_2O(g)$	$\Delta_{\rm r} {\rm H}^0 = -1941 {\rm ~kJ~mol}^{-1}$
(2) 2 B(s) + $3/2$ O ₂ (g) \rightarrow B ₂ O ₃ (s)	$\Delta_{\rm r} {\rm H}^0 = -2368 \ {\rm kJ} \ {\rm mol}^{-1}$
(3) $H_2(g) + 1/2 O_2(g) \rightarrow H_2O(g)$	$\Delta_{\rm r} {\rm H}^0 = -241.8 \ {\rm kJ} \ {\rm mol}^{-1}$

Ques.2 The volume of a certain liquid varies with temperature as

 $V = V' \{0.77 + 3.7 \times 10^{-4} (T/K) + 1.52 \times 10^{-6} (T/K)^2 \}$ where V' is its volume at 298 K. Calculate its expansion coefficient, α , at 310 K.

Ques.3 If U is a function of Temperature and volume, then prove $\left(\frac{\partial U}{\partial T}\right)_P = C_V + \Pi V \alpha$.

Where $\Pi = \left(\frac{\partial U}{\partial V}\right)_T$ and α is Thermal expansion coefficient.

Ques.4 Calculate the isothermal compressibility (β) and the expansion coefficient (α) of a van der Waals gas. Show, using Euler's chain relation, that $\beta TR = \alpha (Vm - b)$.

Ques.5 (a) Express $\left(\frac{\partial C_V}{\partial V}\right)_T$ as a second derivative of U and find its relation to $\left(\frac{\partial U}{\partial V}\right)_T$ and $\left(\frac{\partial C_P}{\partial P}\right)_T$ as a second derivative of H and find its relation to $\left(\frac{\partial H}{\partial P}\right)_T$. (b) From these relations show that $\left(\frac{\partial C_V}{\partial V}\right)_T = 0$ and $\left(\frac{\partial C_P}{\partial P}\right)_T = 0$ for a perfect gas.