CHM202

Energetics and dynamics of chemical reactions

Solutions Assignment –VII Updated

Q.1 Given that $p^*(H_2O) = 0.02308$ atm and $p(H_2O) = 0.02239$ atm in a solution in which 0.122 kg of a non-volatile solute (M = 241 g mol⁻¹) is dissolved in 0.920 kg water at 20 °C. Evaluate the activity and activity coefficient of water in the solution.

Sol.: The activity of A is given as

$$a_A = \frac{p_A}{p_A^0}$$

Let A = Water and B = Solute

$$a_A = \frac{p_A}{p_A^0} \\ = \frac{0.02239 \ atm}{0.02308 \ atm} = 0.9701$$

$$\gamma_A = \frac{a_A}{x_A}$$

and

$$x_A = \frac{n_A}{n_A + n_B}$$

 $n_{\rm A} = \frac{0.920 \text{ kg}}{0.01802 \text{ kg mol}^{-1}} = 51.05 \text{ mol}$ and $n_{\rm B} = \frac{0.122 \text{ kg}}{0.241 \text{ kg mol}^{-1}} = 0.506 \text{ mol}$ $x_{\rm A} = \frac{51.05}{51.05 \pm 0.506} = 0.990$ and $\gamma_{\rm A} = \frac{0.9701}{0.990} = \boxed{0.980}$

Q.2 The vapour pressure of pure liquid A at 20 °C is 68.8 kPa and that of pure liquid B is 82.1 kPa. These two compounds form ideal liquid and gaseous mixtures. Consider the equilibrium composition of a mixture in which the mole fraction of A in the vapour is 0.612. Calculate the total pressure of the vapour and the composition of the liquid mixture.

Sol.:
$$p_A = y_A p = 0.612p = x_A p_A^* = x_A (68.8 \text{ kPa})$$
 ... (1)
 $p_B = y_B p = (1 - y_A)p = 0.388p = x_B p_B^* = (1 - x_A) \times 82.1 \text{ kPa}$... (2)
From eq. (1) and (2):
 $\frac{y_A p}{y_B p} = \frac{x_A p_A^*}{x_B p_B^*} and \frac{0.612}{0.388} = \frac{x_A \times 68.8}{(1 - x_A) \times 82.1}$

$$1.577 = \frac{x_A}{(1 - x_A)} \times 0.838$$

$$\frac{x_A}{(1-x_A)} = 1.882$$

 $x_A = 1.882 - x_A \times 1.882$
 $x_A \times 2.882 = 1.882$
 $x_A = 0.653$
So, $x_B = 1 - 0.653 = 0.347$
Total pressure of the vapour
 $p = x_A p_A^* + x_B p_B^* = 0.653 \times 68.8$ kPa + 0.347 × 82.1 kPa = 73.4 kPa

Q.3 It is found that the boiling point of a binary solution of A and B with $x_A = 0.4217$ is 96 °C. At this temperature the vapour pressures of pure A and B are 110.1 kPa and 76.5 kPa, respectively. (a) Is this solution ideal? (b) What is the initial composition of the vapour above the solution?

Sol.:

(a) If Raoult's law holds, the solution is ideal.

$$p_A = x_A p_A^* = (0.4217) \times (110.1 \text{ kPa}) = 46.43 \text{ kPa}$$

 $p_B = x_B p_B^* = (1 - 0.4217) \times (94.93 \text{ kPa}) = 54.90 \text{ kPa}$
 $p = p_A + p_B = (46.43 + 54.90) \text{ kPa} = 101.33 \text{ kPa} = 1.000 \text{ atm}$

Therefore, Raoult's law correctly predicts the pressure of the boiling liquid and the solution is ideal .

(b)
$$y_A = \frac{p_A}{p} = \frac{46.43 \text{ kPa}}{101.33 \text{ kPa}} = \boxed{0.4582}$$

 $y_B = 1 - y_A = 1.000 - 0.4582 = \boxed{0.5418}$

Q.4 Molecular bromine is 24% dissociated at 1327 °C and 1.00 bar in the equilibrium $Br_2(g) \rightleftharpoons 2$ Br(g). Calculate (a) *K* at 25 °C, (b) $\Delta_r G^0$, (c) *K* at 2000 °C given that $\Delta_r H^0 = +112$ kJ mol⁻¹ over the temperature range.

Sol.:

(a) $Br_2(g) \rightleftharpoons 2Br(g) \alpha = 0.24$

Amount at equilibrium	$(1-\alpha)n$	$2\alpha n$
Mole fraction	$1 - \alpha$	2α
	$\overline{1+\alpha}$	$1+\alpha$
Partial pressure	$(1-\alpha)P$	$2\alpha P$
	$1+\alpha$	$\overline{1+\alpha}$

Assuming both gases are perfect $a_J = \frac{p_J}{p^{\oplus}}$

$$K = \frac{(p_{\rm Br}/p^{\rm e})^2}{p_{\rm Br_2}/p^{\rm e}} = \frac{4\alpha^2 p}{(1-\alpha^2)p^{\rm e}} = \frac{4\alpha}{1-\alpha} \ [p = p^{\rm e}]$$
$$= \frac{4(0.24)^2}{1-(0.24)^2} = 0.24\overline{45} = \boxed{0.24}$$

(b)
$$\Delta_r C$$

$$G^{\oplus} = -RT \ln K = -(8.314 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}) \times (1600 \,\mathrm{K}) \times \ln(0.24\overline{45})$$

$$\boxed{= 19 \,\mathrm{kJ}\,\mathrm{mol}^{-1}}$$

(c)
$$\ln K(2273 \text{ K}) = \ln K(1600 \text{ K}) - \frac{\Delta_r H^{\oplus}}{R} \left(\frac{1}{2273 \text{ K}} - \frac{1}{1600 \text{ K}}\right)$$

 $= \ln(0.24\overline{45}) - \left(\frac{112 \times 10^3 \text{ mol}^{-1}}{8.314 \text{ J} \text{ K}^{-1} \text{ mol}^{-1}}\right) \times (-1.851 \times 10^{-4})$
 $= 1.08\overline{4}$
 $K(2273 \text{ K}) = e^{1.08\overline{4}} = 2.96$

Q.5 If α is the degree of dissociation of NH₃ at pressure *P*, find α in terms of *P* and equilibrium constant K_p .

Sol.:

Dissociation of NH3 occurs as

$$NH_3 \rightleftharpoons \frac{1}{2}N_2 + \frac{3}{2}H_2$$
If initially there was I made NH3 and α is the degree of
dissociation, then at equilibrium,

$$m_{NH_3} = (1 - \alpha); \quad m_{N_2} = \frac{\alpha'}{2} \quad \text{and} \quad m_{H_2} = \frac{3\alpha'}{2}$$
So, total moles = $1 + \alpha$.
Hence the mole fractions (χ) are
 $\chi_{NH_3} = \frac{1 - \alpha'}{1 + \alpha'}, \quad \chi_{N_2} = \frac{\alpha'}{2(1 + \alpha')} \quad \text{and} \quad \chi_{H_2} = \frac{3\alpha'}{2(1 + \alpha')}$

Now,
$$K_{p} = \frac{\left(\frac{p_{N_{2}}\right)^{V_{2}} \left(\frac{p_{H_{2}}}{p_{NH_{3}}}\right)^{3/2}}{p_{NH_{3}}}$$

 $K_{p} = \left[\frac{\alpha'}{2(1+\alpha)}\right]^{V_{2}} \cdot \left[\frac{3\alpha'}{2(1+\alpha)}\right]^{3/2} \cdot \left[\frac{1+\alpha'}{1-\alpha}\right] \cdot p$
 $= \frac{3^{3/2}}{2^{2}} \cdot \frac{\alpha'^{2}}{(1+\alpha')^{2}} \cdot \frac{1+\alpha'}{1-\alpha} \cdot p$
or $K_{p} = 1 \cdot 3p \cdot \frac{\alpha''}{(1-\alpha'')}$
or $\chi_{p} - \alpha'' K_{p} = 1 \cdot 3 \alpha'^{p} p$
or $\alpha'^{2} \cdot (K_{p} + 1 \cdot 3p) = K_{p}$
or $\alpha'^{2} = \frac{K_{p}}{K_{p} + 1 \cdot 3p}$

Q.6 What are the contributions that account for the difference between activity and concentration? **Sol**.:

The general form of the chemical potential of a real or ideal
solution solvent is given by

$$M_A = M_A^* + RT ln \frac{k_A}{k_A^*} ()$$
 where k_A^* is the vapour pressure
of pure A and k_A is the vapour pressure of A when it is a
component of a solution.
The solvent in an ideal solution obeys Racult's law i.e.
 $k_A = \kappa_A k_A^*$ at all concentrations and we can express the
chemical potential as
 $M_A = M_A^* + RT ln \kappa_A - (1)$

However, when the solution does not obey Raoult's law, the

form of this equation can be

$$M_{A} = M_{A}^{*} + RT(\ln a_{A} - (1))$$

The quantity a_{A} is the activity of A , a kind of effective
mole fraction.
Therefore equin (11) is true for both real and ideal nolutions.
We can conclude it by compairing with equation (1)
 $M_{A} = M_{A}^{*} + RT(m(P_{A}/p_{A}^{*}))$
 $\therefore a_{A} = \frac{P_{A}}{p_{A}^{*}}$
Now, because all notivents obey Racult's law more closely as the
concentration of notute approaches Zero, the activity of the
solvent approaches the mole fraction as $\chi_{A} \rightarrow 1$:
 $a_{A} \rightarrow \chi_{A}$ as $\chi_{A} \rightarrow 1$
A convenient way of so pressing this equation by introducing
activity (coefficient (2)).
 $\therefore a_{A} = \mathcal{H} \chi_{A} \quad \mathcal{H} \rightarrow 1$ as $\chi_{A} \rightarrow 1$

Q.7 Find the relation between the standard and biological standard Gibbs energies of a reaction of the form $A \rightarrow B+3H^+$ aq.).

Sol.:

Bibliogical standard state means at
$$pH = 7$$
 (an activity of
 10^{7} , neutral solution).
 \therefore To find the relation between the thermodynamic and
biological standard values of the chemical potential of
hydrogen ions, we write
 $\mathcal{M}_{H^{+}} = \mathcal{M}_{H^{+}} + RTlm a_{H^{+}}$
 $= \mathcal{M}_{H} - (RT lm 10)pH$
 $gt fellows that $\mathcal{M}_{H^{+}} = \mathcal{M}_{H^{+}} - 7RTlm 10$
Now, from the reaction $A \rightarrow B + 3H^{+}(a_{Y})$, Gibbs energies
are related as,
 $\Delta_{x} G^{\oplus} = \mathcal{M}_{B}^{\oplus} - [\mathcal{M}_{B}^{\oplus}] + 3(\mathcal{M}_{H^{+}} - 7RTlm 10)$
 $= [(\mathcal{M}_{B}^{\oplus} - \mathcal{M}_{A}^{\oplus}] + 3(\mathcal{M}_{H^{+}} - 7RTlm 10)$
 $= [(\mathcal{M}_{B}^{\oplus} - \mathcal{M}_{A}^{\oplus}] + 3(\mathcal{M}_{H^{+}} - 7RTlm 10)$
 $= [(\mathcal{M}_{B}^{\oplus} - \mathcal{M}_{A}^{\oplus}] + 3(\mathcal{M}_{H^{+}}] - 21RTlm 10$
 $d_{y} G^{\oplus}$ standard Gibbs energy
 $d_{y} G^{\oplus} = 4_{y} G^{\oplus} - 21RTlm 10$$

Q.8 At what temperature would CO_2 have a fugacity of 400 atm when its pressure is 400 atm?.

Fugarity is the function of the pressure and temperature.
We replace it he true pressure p by fugarity and write

$$G_{2m} = G_{2m}^{\phi} + RT lu(f/p^{\phi})$$

 $f = \phi p$ where ϕ is the fugarity Coefficient which depends
on temperature, and pressure and identity of gas.
Fugarity is related to compression factor 2 of a gasby
the equⁿ
 $ln \phi = \int_{0}^{b} \frac{Z-1}{p} dp$
when $f/p = 1$ i.e. $\phi = 1$ that means $Z \rightarrow 1$