
Course: CHM202

Energetics and dynamics of chemical reactions Assignment – IV

- Q.1 A heat engine operates between 723 °C and 223 °C.
 - (a) What is the maximum efficiency of the engine?
 - (b) Calculate the maximum work that can be done by for each 1.0 kJ of heat supplied by the hot source.
 - (c) How much heat is discharged into the cold sink in a reversible process for each 1.0 kJ supplied by the hot source?
- **Q.2** What is the maximum possible efficiency of a heat engine that has a hot reservoir of water boiling under pressure at 125 °C and a cold reservoir at 25 °C?
- **Q.3** Consider a heat engine that uses reservoirs at 800 °C and 0 °C. (*a*) Calculate the maximum possible efficiency, (*b*) If Q_H is 1000 J, find the maximum value of *w* and the minimum value of Q_C .
- **Q.4** A Carnot-cycle heat engine does 2.50 kJ of work per cycle and has an efficiency of 45.0%. Calculate w, Q_H , and Q_C for one cycle.
- **Q.5** A 0.1 horsepower motor is used to run a Carnot refrigerator. If the motor runs continuously, what will be the temperature reached inside the box if the heat leak into the box is 500 J/s and the outside temperature is 20 °C? Assume that the machine performs with maximum efficiency. [Given: 1 W = 1 J/s; 1 hp = 746 W].
- **Q.6** Calculate Q_{rev} and ΔS for a reversible expansion of an ideal gas at constant pressure P_1 from T_1 , V_1 to T_3 , V_2 (path D in below figure) followed by a reversible cooling of the gas at constant volume V_2 from P_1 , T_3 to P_2 , T_1 (path E).

Q.7 Suppose the internal energy (U) is a function of only the temperature for a gas which abide by the following equation of state:

$$P = \frac{RT}{V - b}$$

Here, *b* is a constant which signifies the size of the molecules. Calculate the change in entropy when one mole of this gas at *T* and V_1 is allowed to expand into a vacuum to a total volume of V_2 .

Q.8 The heat of vaporization of water at 100 °C is 40.66 kJ/mol. Determine the change in entropy (ΔS) when 5.00 g of water vapor condenses to liquid at 100 °C and 1 atm.