Course: CHM202

Energetics and dynamics of chemical reactions Assignment – III

Q.1 The standard reaction enthalpy for the hydrogenation of propene,

 $CH_2 = CHCH_3(g) + H_2(g) \rightarrow CH_3CH_2CH_3(g)$

is -124 kJ mol-1. The standard reaction enthalpy for the combustion of propane,

$$CH_3CH_2CH_3(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$$

is -2220 kJ mol-1. Calculate the standard enthalpy of combustion of propene employing the Hess's law.

Q.2 Given the following heats of reaction at 25 °C:

 $C_2H_4(g) + 3O_2(g) = 2CO_2(g) + 2H_2O(l); \Delta H^o = -337.3 \text{ KCal}$

 $2H_2(g) + O_2(g) = 2H_2O(1); \Delta H^o = -136.6 \text{ KCal}$

 $2C_2H_6(g) + 7O_2 = 4CO_2(g) + 6H_2O(l); \Delta H^o = -745.6 \text{ KCal}$

Calculate the enthalpy for the reaction; $C_2H_4(g) + H_2(g) = C_2H_6(g)$ at 25 °C.

Q.3 At constant volume at 27 °C,

 $2C_6H_6(g) + 15O_2(g) = 12CO_2(g) + 6H_2O(l); \Delta U = -1600 \text{ KCal}$

 $C_2H_2(g) + 5O_2(g) = 4CO_2(g) + 2H_2O(l); \Delta U = -620 \text{ KCal}$

Find the heat of polymerisation of acetylene to benzene at constant pressure.

Q.4 Heat of neutralization of

(i) NH₄OH + HCl = NH₄Cl + H₂O; ΔH^o = -51.46 K.J./mole,

(ii) CH₃COOH + NaOH = CH₃COONa + H₂O; ΔH^o = -50.63 K.J./mole,

(iii) NaOH + HCl = NaCl + H₂O; ΔH^o = -57.54 K.J./mole.

Calculate the heat of neutralization of NH₄OH and CH₃COOH.

Q.5 At 25 °C the heats of the following reactions are:

(a) $Na(s) + \frac{1}{2}Cl_2(g) = NaCl(s); \Delta H^o = -98,230$ Cal

(b) $H_2(g) + S(g) + 2O_2(g) = H_2SO_4(1); \Delta H^o = -193,910$ Cal

(c)
$$2Na(s) + S(s) + 2O_2(g) = Na_2SO_4(s); \Delta H^o = -330,500$$
 Cal

(d)
$$\frac{1}{2}$$
H₂(g) + $\frac{1}{2}$ Cl₂(g) = HCl(g); ΔH^o = -22,060 Cal

Calculate the heat of reaction at constant volume at 25 °C for

2NaCl(s) + H₂SO₄(l) = Na₂SO₄(s) + 2HCl(g).

Q.6 Calculate the enthalpy of formation of $N_2O_5(g)$ from the following data:

 $2NO(g) + O_2(g) = 2NO_2(g); \Delta H^o = -114 \text{ KJ mole}^{-1}$

 $4NO_2(g) + O_2(g) = 2N_2O_5(g); \Delta H^o = --110 \text{ KJ mole}^{-1}$

 $N_2(g) + O_2(g) = 2NO(g); \Delta H^o = -181 \text{ KJ mole}^{-1}.$