INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH, MOHALI CHM201: SPECTROSCOPIC AND OTHERR PHYSICAL METHODS

Constants: $N = 6.023 \times 10^{23} \text{ mol}^{-1}$; $k = 1.381 \times 10^{-23} \text{ JK}^{-1}$; $h = 6.626 \times 10^{-34} \text{ Js}$; $c = 3 \times 10^8 \text{ ms}^{-1}$; Rel. atomic weight of H = 1.000; absolute mass of H-atom = 1.67343 \times 10^{-27} \text{ kg}.

1. An experimental Rotation-Vibration spectrum of ${}^{1}\text{H}{}^{-35}\text{Cl}$ for v = 0 to v = 1 transition is shown in Figure 1 and the corresponding band positions are given below:

 $P_0 = 8.60^* 10^{13} \text{ Hz}$; $R_1 = 8.70^* 10^{13} \text{ Hz}$

(a). Calculate the (i) rotational constant (in cm⁻¹), (ii) equilibrium bond length (nm), (iii) anharmonicity constant and (iv) force-constant (pN/nm) of ¹H-³⁵Cl from the spectrum. [Given the equilibrium oscillation frequency, $\overline{w_e} = 2990 \text{ cm}^{-1}$] 2.5 +2.5 + 2.5 + 2.5 = 10

2. a. Which of the following molecules may show a pure rotational microwave spectrum: 2

(i) H₂, (ii) HCl, (iii) CH₄, (iv) H₂O

b. If the equilibrium oscillation frequency of CO is, $\overline{w_e} = 2990 \text{ cm}^{-1}$, $\overline{w_e}^* x_e = 52 \text{ cm}^{-1}$ and the equilibrium dissociation energy (D_e) is 35486 cm⁻¹. Calculate the experimental dissociation energy (D_0). **3**

c. Draw schematically the pure rotational energy levels of rigid ¹²C¹⁶O and compare it with ¹³C¹⁶O. Extend this comparison for non-rigid ¹³C¹⁶O on the same energy diagram. 5

2. Each question contains (+2) marks for correct answer and (-2) marks for wrong answer. Fill the correct circle with pen of any color.

$10^{*}2 = 20$

- a) In Figure 1, we observe doublets for P and R bands and these doublets are due to the fact that:
 - O ¹H-³⁵Cl is a non-rigid rotor;
 - O The transition is associated with vibrational transition;
 - O The sample of ${}^{1}\text{H}{}^{-35}\text{CI}$ is naturally mixed with ${}^{1}\text{H}{}^{-37}\text{CI}$;
 - O $^{1}H^{-35}CI$ is a rigid rotor;
- b) In FT-IR spectroscopy, we do Fourier transform of the data as
 - O Temporal function to frequency function
 - O Interferrogram to frequency function
 - O Frequency function to Interferrogram
 - O Temporal function to wavelength function
- c) The lifetime of a state that gives rise to a line of width 1 cm⁻¹ is
 - O 5 ps
 - O 5 ns
 - O 10 ns
 - O 1 ns
- d) Role of a grating in a spectrometer is to
 - O Steer monochromatic beam in different directions
 - O Disperse white light into different wavelengths
 - O Count no of photons falling on detector
 - O Focus the incident radiation to sample
- e) The peak maxima for any rotational spectrum
 - \bigcirc appears at *J* =0 to *J* = 1 transition always
 - O Is dependent on molecules under probe
 - O Is dependent on the ground state of v
 - O Is random
- f) The molecule ¹⁶O-¹⁸O is microwave-active,
 - O Always
 - O Only when associated with vibrational transitions
 - O Never
 - O Only when the incident radiation is along the principle rotational axis of the molecule
- g) The peak maxima for any vibrational spectrum
 - O appears at v = 0 to v = 1 transition always

- O Is dependent on molecules under probe
- O Is random
- O None of the above
- h) Blue sky is fact of
 - O Mie scattering
 - O Raman scattering
 - O Rayleigh scattering
 - O Tyndall effect
- i) Absorbance (A) higher than 2 is
 - O Desirable as it makes the measurement more efficient
 - O Not desirable as only a small fraction of light transmitted to detector
 - O Desirable otherwise detector cannot detect molecules
 - O Not desirable as detector goes blind with such a high intensity of light
- j) A biker is approaching a traffic light at a speed of 6.4*10⁷ m/s and as a consequence he sees a red light (660 nm) as a green (520 nm). This is because of
 - O Doppler effect
 - O Line-broadening
 - O It is not possible to see red as green
 - O Red and green are kept so closely in the traffic light

ROUGH WORK