1.	The wavenumber of a transition is 2000 cm ⁻¹ . In what part of the electromagnetic spectrum does this come? Infrared.
	Ultraviolet- visible. Microwave.
	C Radiowave.
2.	The frequency of a transition is 5.4×10^{15} Hz. What is the corresponding wavelength?
	○ 180 000 cm ⁻¹
	○ 5.6 × 10 ⁻⁸ m
	C 560 nm
	\circ 5.6 × 10 ⁻⁶ m
3.	According to the Beer-Lambert Law, on which of the following does absorbance <i>not</i> depend?
	Solution concentration.
	Extinction coefficient of the sample.
	O Distance that the light has travelled through the sample.
	Colour of the solution.
4.	What is the name of an instrument used to measure the absorbance of a coloured compound in solution?
	Colourmeter.
	Colorimeter.
	Coulometer.

	0	Calorimeter.
5.	conce	ution of X of concentration 0.010 mol dm ⁻³ gives an absorbance of 0.5. What entration is a solution of X which gives an absorbance reading of 0.25? Assume that ame optical cell is used for both readings.
	0	0.020 mol dm ⁻³
	0	$0.0050 \; \text{mol dm}^{-3}$
	0	$0.050 \; \text{mol dm}^{-3}$
	0	0.010 mol dm ⁻³
6.	comp	bound Z absorbs light of wavelength 320 nm. A 1.0×10^{-3} mol dm ⁻³ solution of a bound Z gives an absorbance reading of 0.15 when placed in a solution cell of path h 1 cm. What is the value of the molar extinction (absorption) coefficient of Z?
	0	1500 dm ³ mol ⁻¹ cm ⁻¹
	0	150 dm³ mol ⁻¹ cm ⁻¹
	0	15 dm³ mol ⁻¹ cm ⁻¹
	0	$1.5 \times 10^{-4} \text{ mol dm}^{-3} \text{ cm}^{-1}$
7.		lichromate ion absorbs light of wavelength close to 500 nm. Based on this mation, what can you conclude?
	0	The dichromate ion absorbs outside the visible region.
	0	The dichromate ion absorbs within the visible region.
	0	The dichromate ion absorbs in the ultraviolet region.
	0	Solutions of the dichromate ion are colourless.
8.	extine conce readi	ution of a dye absorbs light of wavelength 480 nm, and for this absorption, the ction coefficient is 18600 dm ³ mol ⁻¹ cm ⁻¹ . A sample of the dye of unknown entration is placed in an optical cell of path length 1 cm and the absorbance ng is 0.18. What is the concentration of the solution?
	0	$9.7 \times 10^{-6} \mathrm{mol}\mathrm{dm}^{-3}$

	0	0.026 mol dm ⁻³		
	0	$2.0 \times 10^{-8} \text{mol dm}^{-3}$		
	0	$3.0 \times 10^{-4} \mathrm{mol}\;\mathrm{dm}^{-3}$		
9.	The wavelength of an absorption is 495 nm. In what part of the electromagnetic spectrum does this lie?			
	0	Radiowave.		
	0	Microwave.		
	0	Ultraviolet-visible.		
	0	Infrared.		
10.	The f	requency of a transition is 3.1×10^{10} Hz. What is the energy of this transition?		
	0	$2.0 \times 10^{-23} \text{kJ}$		
	0	$2.0 \times 10^{-23} \mathrm{J}$		
	0	$2.1 \times 10^{-44} \text{ J}$		
	0	$2.1 \times 10^{-44} \text{ kJ}$		
11.	Whic	h of the following statements is correct?		
	0	Infrared radiation has a shorter wavelength than visible light.		
	0	Microwave radiation possesses more energy than infrared radiation.		
	0	Infrared radiation has a lower wavenumber than visible light.		
	0	Ultraviolet radiation has a longer wavelength than infrared radiation.		
12.	Δ soli	ution of compound 7 absorbs light of wavelength 256 pm, and for this absorption		

A solution of compound Z absorbs light of wavelength 256 nm, and for this absorption, log ϵ = 3.3. What is the concentration of a solution of Z (in an optical cell of path length

1 cm) that gives the absorbance reading is 0.21?

 $2.4 \times 10^{-3} \, \text{mol dm}^{-3}$

0

	0	$0.064~\mathrm{mol~dm^{-3}}$
	0	$1.1 \times 10^{-4} \text{mol dm}^{-3}$
	0	$5.0 \times 10^{-4} \text{mol dm}^{-3}$
13.	Whic	h statement is correct?
	0	Wavelength is directly proportional to energy.
	0	Wavenumber is directly proportional to wavelength.
	0	Wavenumber is directly proportional to energy.
	0	Wavelength is directly proportional to frequency.
14.	Aque	ous KMnO ₄ solutions are purple. A plot of absorbance against concentration is:
	0	linear with a negative gradient.
	0	an exponential curve.
	0	linear with a positive gradient.
	0	non-linear.
15.	A shi	ft to lower wavenumber for an absorption in a spectrum corresponds to:
	0	a shift to higher energy.
	0	a shift to lower wavelength.
	0	a loss of intensity.
	0	a shift to lower frequency.
16.		osorption in an electronic spectrum is recorded at 17 000 cm ⁻¹ . What does this spond to in nm?
	0	590 nm
	0	5900 nm

	○ 59 000 nm		
	O 59 nm		
17.	A 0.100 mol dm ⁻³ aqueous solution of a nickel(II) salt shows three absorbances, one of which has a value of ε = 2.95 dm ³ mol ⁻¹ cm ⁻¹ . What is the corresponding absorbance, if the path length of the solution cell used for the measurement is 1.00 cm?		
	0.0340		
	C 29.5		
	0.340		
	O 0.295		
18.	A copper(II) sulfate solution of unknown concentration is placed in a colorimeter and an absorbance reading of 0.46 is recorded. Using the same solution cell, a 0.055 M solution of copper(II) sulfate gives an absorbance reading of 0.34. What is the concentration of the first solution?		
	O 0.35 mol dm ⁻³		
	\circ 8.60 × 10 ⁻³ mol dm ⁻³		
	O 0.074 mol dm ⁻³		
	O.041 mol dm ⁻³		

- 19. An atom in an excited state of 4.9eV emits a photon and ends up in the ground state. The lifetime of the excited state is 1.2×10^{-13} s. What is the spectral line width (in wavelength) of the photon?
- 20. Assuming that the width of a spectral line is the result soley of lifetime broadening, estimate the lifetime of a state that gives rise to a line of width (a) 1.0 cm⁻¹, (b) 0.50Hz.