
Problem set 5

(Will be discussed in the Tutorial session on Oct 8, 2018, 6PM)

- 1. The R(0) line in the robvibrational spectrum of ${}^{1}\text{H}^{35}\text{Cl}$ occurs at 2905.8 cm⁻¹. Calculate the position of the R(0) line for ${}^{1}\text{H}^{37}\text{Cl}$ and ${}^{2}\text{H}^{35}\text{Cl}$. (Calculate the isotope shift in the vibrational frequency.)
- 2. Using the rovibrational spectrum of the HCl (given below), calculate B_0 and B_1 (rotational constants in the v=0 and v=1 levels). Also calculate r_0 and r_1 for the two vibrational states. (Use combination differences)
- 3. Using the B_0 and B_1 values you calculated in problem 2, calculate the J value at which a turn around of the rotational branch will occur, to form a head. Which branch, P or R, will show a turn around and form a head?
- 4. If the *difference* between B_0 and B_1 was ten times larger than what you calculated in problem 3, at what value of J will a head be formed.
- 5. I₂, in its ground electronic state, X, has a vibrational frequency of 212 cm⁻¹ and an R_e of 2.66 Å. In an excited electronic state, B, it has the following properties: vibrational frequency of 125 cm⁻¹ and an R_e of 3.03 Å. In yet another electronic state, a, it has the following parameters: vibrational frequency of 205 cm⁻¹ and an R_e of 2.75 Å. Transitions are observed between $X \rightarrow B$ and $X \rightarrow a$. Which of these two transitions is likely to show a *long* progression of vibrational bands? Justify your answer.
- 6. If the rotational structure in the vibrational bands were to be analysed in both the above transitions, what would you observe red degraded band heads or violet degraded band heads? Why? In which of those two transitions, $X \rightarrow B$ or $X \rightarrow a$, would the turning around of the rotational lines occur at a lower J value?
- 7. The Na atom has a strong line corresponding to a transition between the ²S and ²P states. This line has been observed to be a doublet. Explain why this line occurs as a doublet.
- 8. Draw the energy level diagram for He (including both singlet and triplet states) and show the transitions that are allowed.

