<u>CHM102</u> Assignment 5 (7-3-2017)

- 1. Using the recursion relation of the Hermite polynomials, $x H_v = vH_{v-1} + 0.5 H_{v+1}$ derive the selection rule for the vibrational transitions for a harmonic oscillator.
- 2. Using the recursion relation given above, calculate the $\langle x \rangle$ for a harmonic oscillator.
- 3. If the rotational constant B for the $H^{35}Cl$ molecule is 3.13 x 10^{11} Hz, calculate its internuclear distance.
- 4. If the lines in the rotational spectrum of the H⁷⁹Br molecule are spaced by 16.72 cm⁻¹, calculate the internuclear distance of HBr.
- 5. What are the eigenvalues of the L^2 and L_z operator for the following eigenfunctions of the rotor. (Write down the values by inspection of the eigenfunctions).
 - a) $(1/4\pi)^{0.5}$
 - b) $(3/4\pi)^{0.5}\cos\theta$
 - c) $(3/8\pi)^{0.5}\sin\theta e^{-i\phi}$
 - d) $(3/8\pi)^{0.5}\sin\theta e^{i\phi}$
 - e) $(15/32\pi)^{0.5}\sin^2\theta e^{-2i\varphi}$
- 6. Show that L^2 and L_z operators commute.