Bonding in coordination compounds

Nobel prize 1913

• **Alfred Werner - 1893**

- **VBT**
- **Crystal Field Theory (CFT)**
- **Modified CFT, known as Ligand Field Theory**
- **MOT**

How & Why?

Valance Bond Theory

Basic Principle

A covalent bond forms when the orbtials of two atoms overlap and are occupied by a pair of electrons that have the highest probability of being located between the nuclei.

Linus Carl Pauling (1901-1994) Nobel prizes: 1954, 1962

Valance Bond Model

Ligand = Lewis base Metal = Lewis acid s, p and d orbitals give hybrid orbitals with specific geometries Number and type of M-L hybrid orbitals determines geometry of the complex

Octahedral Complex e.g. [Cr(NH³)6] 3+

] 2-

Square Planar e.g. [Ni(CN)⁴] Tetrahedral e.g 2- . [Zn(OH)⁴

Limitations of VB theory Cannot account for colour of complexes May predict magnetism wrongly Cannot account for spectrochemical series

Crystal Field Theory

•**The relationship between colors and complex metal ions**

Crystal Field Model

 A purely ionic model for transition metal complexes. Ligands are considered as point charge. Predicts the pattern of splitting of d-orbitals. Used to rationalize spectroscopic and magnetic properties.

d-orbitals: look attentively along the axis

Octahedral Field

- **We assume an octahedral array of negative charges placed around the metal ion (which is positive).**
- **The ligand and orbitals lie on the same axes as negative charges.**
	- **Therefore, there is a large, unfavorable interaction** between ligand and these orbitals (d_{z^2} and $d_{x^2-y^2}$).
	- **These orbitals form the degenerate high energy pair of energy levels.**
- **The dxy, dyz, and dxz orbitals bisect the negative charges.**
	- **Therefore, there is a smaller repulsion between ligand and metal for these orbitals.**
	- **These orbitals form the degenerate low energy set of energy levels.**

Tetrahedral Field

- **We assume an tetrahedral array of negative charges placed around the metal ion (which is positive).**
- **The ligand and orbitals lie in between the axes of the negative charges.**
	- **Therefore, there is a large, unfavorable interaction between ligand and these orbitals, dxy, dyz, and dxz .**
	- **These orbitals form the degenerate high energy pair of energy levels.**
- The orbitals along the axes $(\boldsymbol{d}_{\mathsf{z}^2}$ and $\boldsymbol{d}_{\mathsf{x}^2-\mathsf{y}^2})$ – **Feels a smaller repulsion between ligand and metal for these orbitals.**
	- **These orbitals form the degenerate low energy set of energy levels.**

Magnitude of ∆

Oxidation state of the metal ion $[Ru(H_2O)_6]$ **2+ 19800 cm-1** $[Ru(H_2O)_6]$ **3+ 28600 cm-1**

Number of ligands and geometry

 $\langle \Delta$ ₀ \rangle Δ _t Δ _t = 4/9 Δ _o

Nature of the ligand

I < Br < S²⁻ < SCN⁻ < CI < NO₃⁻ < N₃⁻ < F⁻ < urea < OH⁻ < C₂O₄²⁻ < 0^2 < H₂O < NCS < py < NH₃ < en < bpy, phen < NO₂ < CH₃ < **C6H5**- **< CN- < CO**

Crystal Field Stabilization Energy (CFSE)

- In Octahedral field, configuration is: t_{2g}^X e_g^Y • **Net energy of the configuration relative to the average energy of the orbitals is:** $= (-0.4x + 0.6y)\Delta_0$ Δ ^{Ω} = 10 Dq **BEYOND d³** • In weak field: $\Delta_0 < P$, $\Rightarrow t_{2g}^3 e_g^1$
	- In strong field $\Delta_0 > P$, $\Rightarrow t_{2g}^4$
	- **P paring energy**

Ground-state Electronic Configuration, Magnetic Properties and Colour

d 1 -d¹⁰ High spin and low spin complexes

When the 4 th electron is assigned it will either go into the higher energy e^g orbital at an energy cost of ∆**^o or be paired at an energy cost of P, the pairing energy.**

Coulombic repulsion energy and exchange energy

 $P < \Delta$ **P** > Δ

Ground-state Electronic Configuration, Magnetic Properties and Colour

 $[Mn(CN)₆]^{3-} = d⁴$ **Strong field Complex** total spin is $2 \times \frac{1}{2} = 1$ **Low Spin Complex** $[Mn(H₂O)₆]^{3+} = d⁴$ **Weak Field Complex** the total spin is $4 \times \frac{1}{2} = 2$ **High Spin Complex**

Placing electrons in d orbitals

 $\mathsf{CFSE} = 5 \times -0.4 \; \Delta_{\mathsf{oct}} + 2\mathsf{P} = -2.0 \; \Delta_{\mathsf{oct}} + 2\mathsf{P}$

Magnetism

Each electron has a magnetic moment owing to its:

spin angular momentum

orbital angular momentum

Orbital motion of e generates current and magnetic field

Spin motion of e about its own Axis also generates a magnetic field

- **The magnetic moment** µ **of a complex with total spin quantum number S is:**
- $\mu = 2\{S(S+1)\}^{1/2}$ μ_B (μ_B is the Bohr magneton)
- \bullet $\mu_{\rm B} = e \frac{h}{4 \pi m_e} = 9.274 \times 10^{-24} \text{ J T}^1$
- **Since each unpaired electron has a spin ½,**
- $S = (1/2)n$, where $n = no$ of unpaired electrons
- $\mu = {\frac{n(n+2)}{1/2}} \mu_B$
- **In d 4 , d⁵ , d⁶ , and d⁷ octahedral complexes, magnetic measurements can very easily predict weak versus strong field.**
- **Tetrahedral complexes - only high spin complexes result,** for $\Delta_t \ll \Delta_0$.

n = no. of unpaired electrons $\mu = {\mathbf{n}(\mathbf{n+2})}^{1/2} \mu_{\mathbf{B}}$

Similar Calculation can be done for Low-spin Complex

Gouy balance to measure the magnetic susceptibilities

We can measure the magnetic properties of a sample by hanging a vial of material from a balance so that it sits partly in a magnetic field

- The sample will be pulled down into the magnet if it contains unpaired electrons (said to be paramagnetic)
- It will tend to be pushed out of the field if it contains no unpaired electrons (diamagnetic)
- The amount of material in the vial along with the extent to which the sample is pulled into the magnet allows us to calculate the magnetic susceptibility of the sample
	- Sample with a high magnetic susceptibility is $\overline{}$ strongly pulled into the magnetic field

The origin of the color of the transition metal compounds

$\Delta E = E_2 - E_1 = h v$

Ligands influence Δ_{Ω} , therefore the colour

Origin of Color

The Beer-Lambert Law

 $A = log_{10}(Io/I) = \varepsilon cl$

where ε is the molar extinction coefficient (in L cm⁻¹ mole⁻¹), c is concentration in mole L⁻¹ and 1 is the path length in cm. A is known as 'Absorbance' and it is dimensionless.

The colour can change depending on a number of factors e.g.

1. Metal charge 2. Ligand strength

 $[Co(NO₂)(NH₃)₅](NO₃)₂$

 $[Co(SO₄)(NH₃)₅]NO₃$

 $[Co(CO_3)(NH_3)_5]NO_3$

 $[CoI(NH_3)_5] (NO_3)_2$ $[CoBr(NH₃)₅](NO₃)₂$ $[CoCl(NH_3)_5] (NO_3)_2$

The optical absorption spectrum of [Ti(H2O)⁶] 3+

Assigned transition: $e_{\alpha} \rightarrow t_{2g}$ **This corresponds to the energy gap** $\Delta_0 = 243 \text{ kJ} \text{ mol}^{-1}$

• **Spectrochemical Series: An order of ligand field strength based on experiment:**

Weak Field I - < Br- < S2- < SCN- < Cl- < Strong Field NO₃ · **C** N_3 · **c F** · **c urea** < **OH** · **C**₂**O**₄² · **c** O^2 < H₂ O < NCS < py < NH₃ < en < **bipy, phen < NO² - < CH³ - < C6H5- < CN- < CO**

N N

Ethylenediamine (en)

 H_2N NH₂

2,2'-bipyridine (bipy) 1.10 - penanthroline (phen)

N

N

Increasing ligand field strength

As Cr3+ goes from being attached to a weak field ligand to a strong field ligand, ∆ **increases and the color of the complex changes from green to yellow.**

Color and CFT

$$
[V(H2O)6]3+
$$

V(III) = d² ion

violet light absorbed complex appears yellow

 $[V(H₂O)₆]²⁺$
V(II) = d³ ion

yellow light absorbed complex appears violet

 Δ small

Color and CFT

$[Cr(NH₃)₆]³⁺$

NH3 $\frac{H_3N}{H_3N} = Cr = \frac{NH_3}{NH_3}$ $NH₃$

Strong ligands, leading to high Δ_{0} . Absorbs violet and appears yellow.

$[Cr(NH_3)_5Cl]^{2+}$

Relatively weak set of ligands, leading to reduced $\Delta_{\rm o}$. Absorbs yellow and appears magenta.

Laporte Rule

In a molecule or ion possessing center of symmetry, transitions are not allowed between orbitals of same parity. Transitions are only possible between orbitals that differ by $\Delta l = \pm 1$; '1' is the orbital quantum number.

Examples of forbidden transitions are: s to s, d to d, p to f etc.

Tetrahedral geometry is not affected by this rule as it does not have a center of symmetry.

As a consequence, a for tetrahedral complexes are 100 times more than the a for octahedral complexes.

Even octahedral complexes lose their center of symmetry transiently due to unsymmetrical vibrations. This leads to color in octahedral and square planar complexes

Spin-forbidden and Spin-allowed Transitions

Any transition for which $\Delta S^1 \neq 0$ is *strongly forbidden*; that is, in order to be allowed, a transition must involve no change in spin state.

 $[{\rm Mn(H_2O)_6}]^{2+}$ has a d^5 metal ion and is a high-spin complex. Electronic transitions are not only Laporte-forbidden, but also spin-forbidden. The dilute solutions of Mn^{2+} complexes are therefore colorless.

However, certain complexes such as MnO4⁻, CrO4²⁻ etc are intensely colored even though they have metal ions without electrons in the d orbitals. The color of these complexes are not from d-d transitions, but from charge-transfer from ligand to metal orbitals.

d^{θ} and $d^{1\theta}$ ions have no d-d transitions

Limitations of CFT

Considers Ligand as Point charge/dipole only Does not take into account of the overlap of ligand and metal orbitals

Consequence

e.g. Fails to explain why CO is stronger ligand than CN-in complexes having metal in low oxidation state

Metals in Low Oxidation States

- **In low oxidation states, the electron density on the metal ion is very high.**
- **To stabilize low oxidation states, we require ligands, which can simultaneously bind the metal center and also withdraw electron density from it.**

Stabilizing Low Oxidation State: CO Can Do the Job

Ni(CO)⁴], [Fe(CO)⁵], [Cr(CO)⁶], [Mn² (CO)10], [Co² (CO)⁸], Na² [Fe(CO)⁴], Na[Mn(CO)⁵]

Stabilizing Low Oxidation State: CO Can Do the Job

σ **orbital serves as a very weak donor to a metal atom**

 \overline{O}

 \circledcirc **C** \circledcirc **C M** \circledcirc **C M** \circledcirc **C M**

 \circ \circ \circ \rightarrow M

 $\frac{1}{\sqrt{2}}$

CO-M sigma bond M to CO pi backbonding CO to M pi bonding

 \blacktriangleright

 \bullet

(rare)

 $\sqrt{ }$

 \bullet

Distortions in Octahedral Geometry

Regular Octahedron: Complexes with regular octahedral geometry are expected to form, when all of the ligands are of the same kind

Distorted Octahedron: Complexes with distorted octahedral geometry are expected to form, when the ligands are of different kinds

Distortions in Octahedral Geometry

If the ground electronic configuration of a non-linear complex is orbitally degenerate, the complex will distort so as to remove the degeneracy and achieve a lower energy. This is called the **Jahn-Teller Effect**

Jahn-Teller Distortion in Cu(II) Complexes

Jahn-Teller Distortion in d⁹ Complexes

 Δ o >> δ 1 > δ 2.

Jahn-Teller Distortion in d¹ Complexes

Distortions are more pronounced if the degeneracy occurs in an e_{g} orbital

Distortions in Low-Spin Complexes

 d^1

 d^2

 d^4

ď

Distortions in High-Spin Complexes

Crystal field splitting of linear complexes

 Ligands approach along the z axis ∴ **Orbitals containing z component go higher in energy and others get stabilized.**

Crystal field splitting of TBP complexes Ligands approach along the z axis and in between the axis in the XY plane ∴ **Orbital along z go higher in energy, orbitals in the XY plane have intermediate energy and orbitals in XZ and YZ plane experience lowest repulsion and hence gets stabilized**

To summarize

