Addition Reactions to C=C and C≡C

- Addition Reactions to Alkenes
- Markovnikov's Rule
- Stereochemistry of Ionic Addition to Alkenes
- H₂SO₄ Additions to Alkenes
- H₂O Additions to Alkenes
- Oxymercuration/Demurcuration
- Hydroboration/Oxidation
- Addition of Br₂ and Cl₂ to Alkenes
- Stereochemistry of Dihalide Additions
- Halohydrin Formation
- Divalent Carbon Compounds: Carbenes
- Oxidations of Alkenes
- Additions to Alkynes
- Oxidative Cleavage of Alkynes
- Applications in Synthesis

Addition Reactions: Addition to Alkenes

- Have Already Looked at Addition of H₂ (Hydrogenation)
- Will Now Add Additional Reagents
 - > HX (I, Br, Cl) > Br₂
 - > H₂SO₄ > Cl₂
 - > H₂O > I₂

Why Do Additions to Alkenes Work?

- Conversion of π Bond to 2 σ Bonds Typically Energy Favored
- Two σ Bonds Higher Energy than One π + One σ
- Overall Process is thus Typically Exothermic
- π Electrons are Exposed (ABOVE and BELOW sp² Plane)
- π Bonds Good at Capturing Electrophiles (H⁺, Lewis Acids, X₂)
- Metal Ions With Vacant Orbitals Also Good Electrophiles
- Let's Look at the Addition Reaction of a Hydrogen Halide

Addition Reactions: HX to Alkenes

General Order of HX Reactivity:

HI > HBr > HCl > HF

- Usually Dissolved in Solvent (CH₃CO₂H, CH₂Cl₂)
- Can be Bubbled Through Solution as a Gas

Addition Reactions: HBr to Alkenes

- π Bond (Nucleophile) Protonate \rightarrow Carbocation Intermediate
- Carbocation Captured by Br[−] (Nucleophile) → HBr Added
- HBr (or other HX) Addition in Two Overall Steps
- H⁺ and Carbocation are the Respective Electrophiles
- This is a SYMMETRIC Alkene → ASYMMETRIC ALKENES?

Markovnikov's Rule: HBr to Alkenes

- **2-Bromopropane is Major Product**
- Only Very Small Amount of 1-Bromopropane Observed
- True With Other Alkenes

Markovnikov's Rule: Why?

- Product Distribution Explained When Looking at Intermediates
- Recall Discussion of Carbocation Stability (2° > 1°)
- Major Product Formed From More Stable C⁺ Intermediate

Markovnikov's Rule: C+ Stability

- We Know 2° Carbocations More Stable Than 1°
- Major Product Formed From More Stable C⁺ Intermediate
- Means TS in 2° Carbocation Pathway Lower in Energy
- Lower Energy of Activation
- Activation Energies in 1° Carbocation Pathways Much Larger

Markovnikov's Rule: Summary

MARKOVNIKOV'S RULE:

In the ionic additions of an unsymmetrical reagent to a double bond, the positive portion of the adding reagent attaches itself to a carbon atom of the double bond so as to yield the MORE STABLE CARBOCATION as an INTERMEDIATE

This Addition "Preference" is Called REGIOSELECTIVITY

Stereochemistry in Ionic Additions

- Just as we saw in S_N1: C⁺ Has TWO FACES
- Top and Bottom Attack Give Two Stereochemical Products
- *R* and *S* Enantiomers Formed as a Racemic Mixture (50:50)

H₂SO₄ Addition to Alkenes

- Must Add COLD Sulfuric Acid; Form Alkyl Hydrogen Sulfates
- Regioselective Reaction: Obeys Markovnikov's Rule
- Note Mechanistic Similarities w/ HX Addition to Alkenes

Alcohols From Alkyl Hydrogen Sulfates

- HYDROLYSIS Reaction of Alkyl Hydrogen Sulfate
- Simply Heat the Sulfate in Water
- Net Reaction is Markovnikov Addition of H₂O to Alkene
- Used in One Industrial Ethanol Making Process

Addition of H₂O to Alkenes: Hydration

HYDRATION Reaction of an Alkene

- Acid Catalyzed Addition of H₂O Across Double Bond
- Net Reaction is Markovnikov Addition of H₂O to Alkene
- We've Seen a Similar Reaction: Acid Catalyzed Dehydration
- Carbocation Rearrangements Possible w/ Dehydration Reactions

Oxymercuration-Demercuration

OXYMERCURATION:

- Net Reaction: Markovnikov Addition of H₂O to Alkene
- Both Reactions Quite Rapid; Alcohol Yields Usually > 90%
- NaBH₄: Sodium Borohydride → "H⁻" Delivering Agent

Oxymercuration-Demercuration (2)

Added Benefit of Oxymercuration/Demercuration:

C+ REARRANGEMENTS Seldom Observed

Consider Example Seen on Next Slide

Oxymercuration-Demercuration (3)

- Would Expect 2° Carbocation to Rearrange to 3°
- Added C⁺ Stabilization from Hg Atom Prevents Rearrangment
- Useful Hydration Process for Avoiding Skeletal Migrations

Hydroboration—Oxidation Reactions

- Hydroboration: Addition of H and B to Alkene
- Neutral Boron has 3 Coordination Sites
 - Get Trialkyl Boranes as an Intermediate (Tripropylborane)
- Oxidation: H₂O₂, NaOH Oxidize to Trialkylborate Ester
- Oxidation Followed by a Hydrolysis, Cleaves Borate Ester
- ANTI-MARKOVNIKOV Product (Good for 1° Alcohols!)

Hydroboration—Oxidation Reactions

- We Mentioned anti-Markovnikov Regiochemistry
- Reaction also Proceeds with SYN Stereochemistry

H and OH Delivered anti-Markovnikov to the SAME FACE of the π Bond

Addition of Cl₂ and Br₂ to Alkenes

- Obtain Vicinal Dihalides as Reaction Products
- Want to use a Non-Nucleophilic Solvent (Due to Intermediate)

Important to Run Reactions in Dark (Avoid Radicals)

General Mechanism of Dihalide Addition

- Intermediate is a BROMONIUM ION (in Br₂ Case)
- Nucleophilic Solvents Can Capture (Open) Bromonium Ion

Bromonium Ion Opening is S_N2 → Anti Addition of Br₂

Stereochemistry of Dihalide Additions

- Can Open Symmetric Bromonium Ions at Either Carbon
- Always (for now) Anti (Trans) Addition of X₂
- Reaction Products Are Enantiomers
- Racemic Mixtures (50:50) in Symmetric Bromonium Ions
- Will Get Excess of One Enantiomer in Asymmetric Cases
- Stereospecific Reactions: One Stereoiomeric Form of the Starting Material Reacts in Such a Way to Form a Specific Stereoisomeric Form of the Product

Halohydrin Formation

- Intermediate is Still a BROMONIUM ION (in Br₂ Case)
- Nucleophilic Solvents Can Capture (Open) Bromonium Ion
 - H₂O Opens the Bromonium Ion; Another H₂O Deprotonates

 - Still Can Get Stereoisomeric Products (Open Either End)

Divalent Carbon Compounds: Carbenes

- Common Way of Generating Carbenes (Divalent Carbon)
- Diazomethane: 3 Resonance Structures (Draw Others??)
- Carbenes are Highly Reactive Species; Short-Lived
- Excellent Utility is in the Synthesis of Cyclopropanes

Divalent Carbon Compounds: Carbenes

- Halogen Substituted Carbenes from Haloforms (CHCl₃, etc.)
- Last Reaction is Called the "Simmons-Smith" Reaction

Oxidation: Syn Dihydroxylation

- C=C is Oxidized by OsO₄
- Addition of Hydroxyl Groups Proceeds w/ SYN Stereochemistry
- Can Also use KMNO₄ (More Powerful, May Cleave Diol)
- If Using KMNO₄, need COLD Reaction Temperatures

Oxidation: Syn Dihydroxylation

- Syn Addition Due to 5-membered Transition State
- Transition State Same for KMNO₄ Oxidations
- Cleavage of Osmate Ester Does Not Change C-O Stereochemistry

Oxidative Cleavage of Alkenes

- Diol is Believed to be Intermediate in Cleavage Reaction
- Unsubstituted Alkene Carbons Oxidized to Carbon Dioxide
- Monosubstituted Alkene Carbons Oxidized to Carboxylates
- Disubstituted Alkene Carbons Oxidized to Ketones

How You May See Oxidative Cleavage

An Unknown Alkene (C₈H₁₆) Gives Two Products When Treated w/ Hot KMnO₄:

The Products are a Carboxylic Acid and a Ketone, So Our Alkene Must Be Trisubstituted. We Don't Know if it is CIS or TRANS, but we Can Put the Rest of the Structure Together:

Dihalide Addition To Alkynes

- Addition Reactions, Just as in Alkenes (adds Once or Twice)
- Anti Additions, First Product Usually a Trans Dihaloalkene
- Can Get Relatively Good Trans Dihaloalkene Yields (1 eq X₂)

Addition of HX to Alkynes

- Addition Reactions, Just as in Alkenes (adds Once or Twice)
- Final Product Typically Geminal Dihaloalkene
- Both Additions Follow Markovnikov's Rule (explains gem.)
- Alumina Accelerates Reaction Rate (as seen w/ Alkenes)

Oxidative Cleavage of Alkynes

- Can Use Either Ozonolysis or KMnO₄ as with Alkenes
- Products of the Oxidative Cleavage are Carboxylic Acids

Anti-Markovnikov HBr Addition

- Addition of Peroxides (ROOR) → ANTI-MARKOVNIKOV
- Goes Through a Radical Mechanism
- Right Now Focus on Regiochemistry (Know the Reaction)

The Diels-Alder Reaction

Synthetic method for preparing compounds containing a cyclohexene ring

The Reaction

conjugated diene

alkene dienophile

cyclohexene

transition state

Mechanistic features

concerted mechanism

• cycloaddition

• pericyclic reaction

-a concerted reaction that proceeds through a cyclic transition state

Recall the general reaction...

conjugated alkene diene dienophile

cyclohexene

• The equation as written is somewhat misleading because ethylene is a relatively unreactive dienophile.

What makes a reactive dienophile?

The most reactive dienophiles have an electron-withdrawing group (EWG) directly attached to the double bond.

Typical EWGs

CH $H_2C = CHCH = CH_2 + H_2C = CH$ 100°C benzene CH (100%)

Acetylenic Dienophile

Diels-Alder Reaction is Stereospecific*

syn addition to alkene

• cis-trans relationship of substituents on alkene retained in cyclohexene product

*A stereospecific reaction is one in which stereoisomeric starting materials give stereoisomeric products; characterized by terms like syn addition, anti elimination, inversion of configuration, etc.

$H_2C = CHCH = CH_2 +$

 C_6H_5

Н

ĊOH

Н

only product

H₂C=CHCH=CH₂ +

Н

 C_6H_5'

ĊOH

Η

only product

Cyclic dienes yield bridged bicyclic Diels-Alder adducts.

Alcohols, Carbonyls and REDOX

- The Carbonyl Group
- Oxidation/Reduction Reactions: Review
- Reduction of Carbonyls to Alcohols
- Oxidation of Alcohols
- Organometallic Compounds
- Organolithium and Magnesium Compounds
- Reactions of Organolithium/Magnesium Species
- Alcohols from Grignard Reactions
- Lithium Dialkylcuprates

The Carbonyl Functional Group

- Carbonyl Features 1 σ and 1 π Bond
- Carbonyl Group Quite Polarized (C^{δ+}, O^{δ-})

General Reactions of Carbonyls

Nucleophilic Addition to Carbonyl Groups:

Oxidation/Reduction Reactions

- Commonly Termed 'REDOX' Reactions
- From General Chemistry, we Will Recall
 - Oxidation: Loss of Electrons
 - Reduction: Gain of Electrons
- Organic Chemists will Typically use Different Definitions
 - Reduction: Increase Hydrogen Content (Decrease Oxygen)
 - Oxidation: Decrease Hydrogen Content (Increase Oxygen)
- Oxidizing/Reducing Agents: Usually Inorganic Compounds (M+)
- We will also Recall that in REDOX Reactions:
 - Oxidizing Agents get Reduced
 - Reducing Agents get Oxidized

Oxidation States of Carbon: Organics

• +1 For More Electronegative, -1 For Less, 0 For Bonded Carbon

Alcohol Synthesis: Carbonyl Reduction

Reducing Agents: 1° and 2° Alcohols

- Sodium Borohydride: NaBH₄
- Lithium Aluminum Hydride: LiAlH₄ (LAH)
- H₂/Transition Metal Catalyst
- NaBH₄ and LiAIH₄ are Hydride Transfer Agents
- Hydride (H⁻) Acts as a Nucleophile
- Carbonyls Have Varying Degrees of Ease of Reduction:

Hardest

Easiest

Selection of a Reducing Agent

- Choice of Reducing Agent Impacts Reaction Products
- For Ketones/Aldehydes Either Reductant Suffices

	Carboxylate	Ester	Ketone	Aldehyde
LiAlH ₄	1° Alcohol	1° Alcohol	2° Alcohol	1° Alcohol
NaBH ₄	No Reaction	No Reaction	2° Alcohol	1° Alcohol

Carboxylates/Esters Only Reduced by LiAlH₄

• For Compounds w/ Multiple Carbonyl F.G.s; Select Based on Which Group(s) Need to be Reduced

NaBH₄/LiAlH₄ Reduction Examples

DIBAL (diisobutylaluminum hydride $[(CH_3)_2CHCH_2]_2AIH)$ allows the addition of one equivalent of hydride to an ester

Replacing some of hydrogens of LiAlH₄ with OR groups decreases the reactivity of the metal hydride

Formation of Amines by Reduction

NaBH₄ can be used to selectively reduce an aldehyde or a ketone in a compound keeping the ester or a C=C unaffected

Oxidizing Agents in Organic Chemistry

- PCC Generally a Mild Oxidant (1° Alcohol → Aldehyde)
- Jones Reagent Harsher Oxidant (1° Alcohol → Carboxylic Acid)
- Choose Oxidant Based on Desired Carbonyl Functional Group

General Oxidizing Agent Selection

- Just as in Reductions, Oxidation Products Depend on Reagent
- Generally Don't Oxidize 3° Alcohols

	MeOH	1° Alcohol	2° Alcohol	3° Alcohol
PCC	H ₂ C=O	Aldehyde	Ketone	No Reaction
Cr ⁶⁺ H ₂ SO ₄	HCO ₂ H	Carboxylic Acid	Ketone	No Reaction

- PCC Good For Aldehydes From Primary Alchols
- Cr⁶⁺/H₂SO₄ Reagents, KMNO₄ Primary → Carboxylic Acids
- Use What You Like For Most Ketones

Oxidation of 1°, 2° Alcohols

Oxidation Mechanisms: Chromate Esters

